Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

sin(x)+pi/2 =cos(x)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

sin(x)+2π​=cos(x)

Solution

NoSolutionforx∈R
Solution steps
sin(x)+2π​=cos(x)
Square both sides(sin(x)+2π​)2=cos2(x)
Subtract cos2(x) from both sidessin2(x)+πsin(x)+4π2​−cos2(x)=0
Simplify sin2(x)+πsin(x)+4π2​−cos2(x):44sin2(x)+4πsin(x)+π2−4cos2(x)​
sin2(x)+πsin(x)+4π2​−cos2(x)
Convert element to fraction: sin2(x)=4sin2(x)4​,πsin(x)=4πsin(x)4​,cos2(x)=4cos2(x)4​=4sin2(x)⋅4​+4πsin(x)⋅4​+4π2​−4cos2(x)⋅4​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=4sin2(x)⋅4+πsin(x)⋅4+π2−cos2(x)⋅4​
44sin2(x)+4πsin(x)+π2−4cos2(x)​=0
g(x)f(x)​=0⇒f(x)=04sin2(x)+4πsin(x)+π2−4cos2(x)=0
Rewrite using trig identities
π2−4cos2(x)+4sin2(x)+4sin(x)π
Use the Pythagorean identity: cos2(x)+sin2(x)=1cos2(x)=1−sin2(x)=π2−4(1−sin2(x))+4sin2(x)+4sin(x)π
Simplify π2−4(1−sin2(x))+4sin2(x)+4sin(x)π:π2−4+8sin2(x)+4πsin(x)
π2−4(1−sin2(x))+4sin2(x)+4sin(x)π
=π2−4(1−sin2(x))+4sin2(x)+4πsin(x)
Expand −4(1−sin2(x)):−4+4sin2(x)
−4(1−sin2(x))
Apply the distributive law: a(b−c)=ab−aca=−4,b=1,c=sin2(x)=−4⋅1−(−4)sin2(x)
Apply minus-plus rules−(−a)=a=−4⋅1+4sin2(x)
Multiply the numbers: 4⋅1=4=−4+4sin2(x)
=π2−4+4sin2(x)+4sin2(x)+4sin(x)π
Add similar elements: 4sin2(x)+4sin2(x)=8sin2(x)=π2−4+8sin2(x)+4πsin(x)
=π2−4+8sin2(x)+4πsin(x)
−4+π2+8sin2(x)+4sin(x)π=0
Solve by substitution
−4+π2+8sin2(x)+4sin(x)π=0
Let: sin(x)=u−4+π2+8u2+4uπ=0
−4+π2+8u2+4uπ=0:u=−4π​+i16−128+16π2​​,u=−4π​−i16−128+16π2​​
−4+π2+8u2+4uπ=0
Write in the standard form ax2+bx+c=08u2+4πu−4+π2=0
Solve with the quadratic formula
8u2+4πu−4+π2=0
Quadratic Equation Formula:
For a=8,b=4π,c=−4+π2u1,2​=2⋅8−4π±(4π)2−4⋅8(−4+π2)​​
u1,2​=2⋅8−4π±(4π)2−4⋅8(−4+π2)​​
Simplify (4π)2−4⋅8(−4+π2)​:i16π2−128​
(4π)2−4⋅8(−4+π2)​
Apply exponent rule: (a⋅b)n=anbn=42π2−4⋅8(π2−4)​
Multiply the numbers: 4⋅8=32=42π2−32(π2−4)​
Apply imaginary number rule: −a​=ia​=i32(π2−4)−42π2​
−42π2+32(−4+π2)​=16π2−128​
−42π2+32(−4+π2)​
42=16=−16π2+32(π2−4)​
Expand −16π2+32(−4+π2):16π2−128
−16π2+32(−4+π2)
Expand 32(−4+π2):−128+32π2
32(−4+π2)
Apply the distributive law: a(b+c)=ab+aca=32,b=−4,c=π2=32(−4)+32π2
Apply minus-plus rules+(−a)=−a=−32⋅4+32π2
Multiply the numbers: 32⋅4=128=−128+32π2
=−16π2−128+32π2
Simplify −16π2−128+32π2:16π2−128
−16π2−128+32π2
Group like terms=−16π2+32π2−128
Add similar elements: −16π2+32π2=16π2=16π2−128
=16π2−128
=16π2−128​
=i16π2−128​
u1,2​=2⋅8−4π±i16π2−128​​
Separate the solutionsu1​=2⋅8−4π+i16π2−128​​,u2​=2⋅8−4π−i16π2−128​​
u=2⋅8−4π+i16π2−128​​:−4π​+i16−128+16π2​​
2⋅8−4π+i16π2−128​​
Multiply the numbers: 2⋅8=16=16−4π+i16π2−128​​
Rewrite 16−4π+i16π2−128​​ in standard complex form: −4π​+1616π2−128​​i
16−4π+i16π2−128​​
Apply the fraction rule: ca±b​=ca​±cb​16−4π+i16π2−128​​=−164π​+16i16π2−128​​=−164π​+16i16π2−128​​
Cancel 164π​:4π​
164π​
Cancel the common factor: 4=4π​
=−4π​+16i16π2−128​​
=−4π​+1616π2−128​​i
u=2⋅8−4π−i16π2−128​​:−4π​−i16−128+16π2​​
2⋅8−4π−i16π2−128​​
Multiply the numbers: 2⋅8=16=16−4π−i16π2−128​​
Rewrite 16−4π−i16π2−128​​ in standard complex form: −4π​−1616π2−128​​i
16−4π−i16π2−128​​
Apply the fraction rule: ca±b​=ca​±cb​16−4π−i16π2−128​​=−164π​−16i16π2−128​​=−164π​−16i16π2−128​​
Cancel 164π​:4π​
164π​
Cancel the common factor: 4=4π​
=−4π​−16i16π2−128​​
=−4π​−1616π2−128​​i
The solutions to the quadratic equation are:u=−4π​+i16−128+16π2​​,u=−4π​−i16−128+16π2​​
Substitute back u=sin(x)sin(x)=−4π​+i16−128+16π2​​,sin(x)=−4π​−i16−128+16π2​​
sin(x)=−4π​+i16−128+16π2​​,sin(x)=−4π​−i16−128+16π2​​
sin(x)=−4π​+i16−128+16π2​​:No Solution
sin(x)=−4π​+i16−128+16π2​​
NoSolution
sin(x)=−4π​−i16−128+16π2​​:No Solution
sin(x)=−4π​−i16−128+16π2​​
NoSolution
Combine all the solutionsNoSolution
Verify solutions by plugging them into the original equation
Check the solutions by plugging them into sin(x)+2π​=cos(x)
Remove the ones that don't agree with the equation.
NoSolutionforx∈R

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

5cos(x)-3=9cos(x)-53sin^2(x)-8sin(x)+4=03tan(x)=tan(2x)cos(4x)+sin(6x)=0-15.44=-2sin(-3θ+300)

Frequently Asked Questions (FAQ)

  • What is the general solution for sin(x)+pi/2 =cos(x) ?

    The general solution for sin(x)+pi/2 =cos(x) is No Solution for x\in\mathbb{R}
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024