Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

sec(2x-10)=csc(50)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

sec(2x−10∘)=csc(50∘)

Solution

x=180∘n+5∘+20.69813…​,x=180∘+180∘n+5∘−20.69813…​
+1
Radians
x=36π​+20.69813…​+πn,x=π+36π​−20.69813…​+πn
Solution steps
sec(2x−10∘)=csc(50∘)
Apply trig inverse properties
sec(2x−10∘)=csc(50∘)
General solutions for sec(2x−10∘)=csc(50∘)sec(x)=a⇒x=arcsec(a)+360∘n,x=360∘−arcsec(a)+360∘n2x−10∘=arcsec(csc(50∘))+360∘n,2x−10∘=360∘−arcsec(csc(50∘))+360∘n
2x−10∘=arcsec(csc(50∘))+360∘n,2x−10∘=360∘−arcsec(csc(50∘))+360∘n
Solve 2x−10∘=arcsec(csc(50∘))+360∘n:x=180∘n+5∘+2arcsec(csc(50∘))​
2x−10∘=arcsec(csc(50∘))+360∘n
Move 10∘to the right side
2x−10∘=arcsec(csc(50∘))+360∘n
Add 10∘ to both sides2x−10∘+10∘=arcsec(csc(50∘))+360∘n+10∘
Simplify2x=arcsec(csc(50∘))+360∘n+10∘
2x=arcsec(csc(50∘))+360∘n+10∘
Divide both sides by 2
2x=arcsec(csc(50∘))+360∘n+10∘
Divide both sides by 222x​=2arcsec(csc(50∘))​+2360∘n​+210∘​
Simplify
22x​=2arcsec(csc(50∘))​+2360∘n​+210∘​
Simplify 22x​:x
22x​
Divide the numbers: 22​=1=x
Simplify 2arcsec(csc(50∘))​+2360∘n​+210∘​:180∘n+5∘+2arcsec(csc(50∘))​
2arcsec(csc(50∘))​+2360∘n​+210∘​
Group like terms=2360∘n​+210∘​+2arcsec(csc(50∘))​
2360∘n​=180∘n
2360∘n​
Divide the numbers: 22​=1=180∘n
210∘​=5∘
210∘​
Apply the fraction rule: acb​​=c⋅ab​=18⋅2180∘​
Multiply the numbers: 18⋅2=36=5∘
=180∘n+5∘+2arcsec(csc(50∘))​
x=180∘n+5∘+2arcsec(csc(50∘))​
x=180∘n+5∘+2arcsec(csc(50∘))​
x=180∘n+5∘+2arcsec(csc(50∘))​
Solve 2x−10∘=360∘−arcsec(csc(50∘))+360∘n:x=180∘+180∘n+5∘−2arcsec(csc(50∘))​
2x−10∘=360∘−arcsec(csc(50∘))+360∘n
Move 10∘to the right side
2x−10∘=360∘−arcsec(csc(50∘))+360∘n
Add 10∘ to both sides2x−10∘+10∘=360∘−arcsec(csc(50∘))+360∘n+10∘
Simplify2x=360∘−arcsec(csc(50∘))+360∘n+10∘
2x=360∘−arcsec(csc(50∘))+360∘n+10∘
Divide both sides by 2
2x=360∘−arcsec(csc(50∘))+360∘n+10∘
Divide both sides by 222x​=180∘−2arcsec(csc(50∘))​+2360∘n​+210∘​
Simplify
22x​=180∘−2arcsec(csc(50∘))​+2360∘n​+210∘​
Simplify 22x​:x
22x​
Divide the numbers: 22​=1=x
Simplify 180∘−2arcsec(csc(50∘))​+2360∘n​+210∘​:180∘+180∘n+5∘−2arcsec(csc(50∘))​
180∘−2arcsec(csc(50∘))​+2360∘n​+210∘​
Group like terms=180∘+2360∘n​+210∘​−2arcsec(csc(50∘))​
180∘=180∘
180∘
Divide the numbers: 22​=1=180∘
2360∘n​=180∘n
2360∘n​
Divide the numbers: 22​=1=180∘n
210∘​=5∘
210∘​
Apply the fraction rule: acb​​=c⋅ab​=18⋅2180∘​
Multiply the numbers: 18⋅2=36=5∘
=180∘+180∘n+5∘−2arcsec(csc(50∘))​
x=180∘+180∘n+5∘−2arcsec(csc(50∘))​
x=180∘+180∘n+5∘−2arcsec(csc(50∘))​
x=180∘+180∘n+5∘−2arcsec(csc(50∘))​
x=180∘n+5∘+2arcsec(csc(50∘))​,x=180∘+180∘n+5∘−2arcsec(csc(50∘))​
Show solutions in decimal formx=180∘n+5∘+20.69813…​,x=180∘+180∘n+5∘−20.69813…​

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

7sec(x)-7=0,0<= x<= 2picos(x)+cos(x)=cos(2x)csc^2(2x-0.6)=16tan(x-1)=25sin^2(x)+10sin(x)+2=0

Frequently Asked Questions (FAQ)

  • What is the general solution for sec(2x-10)=csc(50) ?

    The general solution for sec(2x-10)=csc(50) is x=180n+5+(0.69813…)/2 ,x=180+180n+5-(0.69813…)/2
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024