Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

tan(2x)=cos(2x),0<= x<= pi

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

tan(2x)=cos(2x),0≤x≤π

Solution

x=20.66623…​,x=2π−0.66623…​
+1
Degrees
x=19.08635…∘,x=70.91364…∘
Solution steps
tan(2x)=cos(2x),0≤x≤π
Subtract cos(2x) from both sidestan(2x)−cos(2x)=0
Express with sin, coscos(2x)sin(2x)​−cos(2x)=0
Simplify cos(2x)sin(2x)​−cos(2x):cos(2x)sin(2x)−cos2(2x)​
cos(2x)sin(2x)​−cos(2x)
Convert element to fraction: cos(2x)=cos(2x)cos(2x)cos(2x)​=cos(2x)sin(2x)​−cos(2x)cos(2x)cos(2x)​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=cos(2x)sin(2x)−cos(2x)cos(2x)​
sin(2x)−cos(2x)cos(2x)=sin(2x)−cos2(2x)
sin(2x)−cos(2x)cos(2x)
cos(2x)cos(2x)=cos2(2x)
cos(2x)cos(2x)
Apply exponent rule: ab⋅ac=ab+ccos(2x)cos(2x)=cos1+1(2x)=cos1+1(2x)
Add the numbers: 1+1=2=cos2(2x)
=sin(2x)−cos2(2x)
=cos(2x)sin(2x)−cos2(2x)​
cos(2x)sin(2x)−cos2(2x)​=0
g(x)f(x)​=0⇒f(x)=0sin(2x)−cos2(2x)=0
Add cos2(2x) to both sidessin(2x)=cos2(2x)
Square both sidessin2(2x)=(cos2(2x))2
Subtract (cos2(2x))2 from both sidessin2(2x)−cos4(2x)=0
Factor sin2(2x)−cos4(2x):(sin(2x)+cos2(2x))(sin(2x)−cos2(2x))
sin2(2x)−cos4(2x)
Apply exponent rule: abc=(ab)ccos4(2x)=(cos2(2x))2=sin2(2x)−(cos2(2x))2
Apply Difference of Two Squares Formula: x2−y2=(x+y)(x−y)sin2(2x)−(cos2(2x))2=(sin(2x)+cos2(2x))(sin(2x)−cos2(2x))=(sin(2x)+cos2(2x))(sin(2x)−cos2(2x))
(sin(2x)+cos2(2x))(sin(2x)−cos2(2x))=0
Solving each part separatelysin(2x)+cos2(2x)=0orsin(2x)−cos2(2x)=0
sin(2x)+cos2(2x)=0,0≤x≤π:x=2π+arcsin(25​−1​)​,x=2−arcsin(25​−1​)+2π​
sin(2x)+cos2(2x)=0,0≤x≤π
Rewrite using trig identities
cos2(2x)+sin(2x)
Use the Pythagorean identity: cos2(x)+sin2(x)=1cos2(x)=1−sin2(x)=1−sin2(2x)+sin(2x)
1+sin(2x)−sin2(2x)=0
Solve by substitution
1+sin(2x)−sin2(2x)=0
Let: sin(2x)=u1+u−u2=0
1+u−u2=0:u=−2−1+5​​,u=21+5​​
1+u−u2=0
Write in the standard form ax2+bx+c=0−u2+u+1=0
Solve with the quadratic formula
−u2+u+1=0
Quadratic Equation Formula:
For a=−1,b=1,c=1u1,2​=2(−1)−1±12−4(−1)⋅1​​
u1,2​=2(−1)−1±12−4(−1)⋅1​​
12−4(−1)⋅1​=5​
12−4(−1)⋅1​
Apply rule 1a=112=1=1−4(−1)⋅1​
Apply rule −(−a)=a=1+4⋅1⋅1​
Multiply the numbers: 4⋅1⋅1=4=1+4​
Add the numbers: 1+4=5=5​
u1,2​=2(−1)−1±5​​
Separate the solutionsu1​=2(−1)−1+5​​,u2​=2(−1)−1−5​​
u=2(−1)−1+5​​:−2−1+5​​
2(−1)−1+5​​
Remove parentheses: (−a)=−a=−2⋅1−1+5​​
Multiply the numbers: 2⋅1=2=−2−1+5​​
Apply the fraction rule: −ba​=−ba​=−2−1+5​​
u=2(−1)−1−5​​:21+5​​
2(−1)−1−5​​
Remove parentheses: (−a)=−a=−2⋅1−1−5​​
Multiply the numbers: 2⋅1=2=−2−1−5​​
Apply the fraction rule: −b−a​=ba​−1−5​=−(1+5​)=21+5​​
The solutions to the quadratic equation are:u=−2−1+5​​,u=21+5​​
Substitute back u=sin(2x)sin(2x)=−2−1+5​​,sin(2x)=21+5​​
sin(2x)=−2−1+5​​,sin(2x)=21+5​​
sin(2x)=−2−1+5​​,0≤x≤π:x=2π+arcsin(25​−1​)​,x=2−arcsin(25​−1​)+2π​
sin(2x)=−2−1+5​​,0≤x≤π
Apply trig inverse properties
sin(2x)=−2−1+5​​
General solutions for sin(2x)=−2−1+5​​sin(x)=−a⇒x=arcsin(−a)+2πn,x=π+arcsin(a)+2πn2x=arcsin(−2−1+5​​)+2πn,2x=π+arcsin(2−1+5​​)+2πn
2x=arcsin(−2−1+5​​)+2πn,2x=π+arcsin(2−1+5​​)+2πn
Solve 2x=arcsin(−2−1+5​​)+2πn:x=−2arcsin(25​−1​)​+πn
2x=arcsin(−2−1+5​​)+2πn
Simplify arcsin(−2−1+5​​)+2πn:−arcsin(25​−1​)+2πn
arcsin(−2−1+5​​)+2πn
Use the following property: arcsin(−x)=−arcsin(x)arcsin(−25​−1​)=−arcsin(25​−1​)=−arcsin(25​−1​)+2πn
2x=−arcsin(25​−1​)+2πn
Divide both sides by 2
2x=−arcsin(25​−1​)+2πn
Divide both sides by 222x​=−2arcsin(25​−1​)​+22πn​
Simplifyx=−2arcsin(25​−1​)​+πn
x=−2arcsin(25​−1​)​+πn
Solve 2x=π+arcsin(2−1+5​​)+2πn:x=2π​+2arcsin(2−1+5​​)​+πn
2x=π+arcsin(2−1+5​​)+2πn
Divide both sides by 2
2x=π+arcsin(2−1+5​​)+2πn
Divide both sides by 222x​=2π​+2arcsin(2−1+5​​)​+22πn​
Simplifyx=2π​+2arcsin(2−1+5​​)​+πn
x=2π​+2arcsin(2−1+5​​)​+πn
x=−2arcsin(25​−1​)​+πn,x=2π​+2arcsin(2−1+5​​)​+πn
Solutions for the range 0≤x≤πx=2π+arcsin(25​−1​)​,x=2−arcsin(25​−1​)+2π​
sin(2x)=21+5​​,0≤x≤π:No Solution
sin(2x)=21+5​​,0≤x≤π
−1≤sin(x)≤1NoSolution
Combine all the solutionsx=2π+arcsin(25​−1​)​,x=2−arcsin(25​−1​)+2π​
sin(2x)−cos2(2x)=0,0≤x≤π:x=2arcsin(25​−1​)​,x=2π−arcsin(25​−1​)​
sin(2x)−cos2(2x)=0,0≤x≤π
Rewrite using trig identities
−cos2(2x)+sin(2x)
Use the Pythagorean identity: cos2(x)+sin2(x)=1cos2(x)=1−sin2(x)=−(1−sin2(2x))+sin(2x)
−(1−sin2(2x)):−1+sin2(2x)
−(1−sin2(2x))
Distribute parentheses=−(1)−(−sin2(2x))
Apply minus-plus rules−(−a)=a,−(a)=−a=−1+sin2(2x)
=−1+sin2(2x)+sin(2x)
−1+sin(2x)+sin2(2x)=0
Solve by substitution
−1+sin(2x)+sin2(2x)=0
Let: sin(2x)=u−1+u+u2=0
−1+u+u2=0:u=2−1+5​​,u=2−1−5​​
−1+u+u2=0
Write in the standard form ax2+bx+c=0u2+u−1=0
Solve with the quadratic formula
u2+u−1=0
Quadratic Equation Formula:
For a=1,b=1,c=−1u1,2​=2⋅1−1±12−4⋅1⋅(−1)​​
u1,2​=2⋅1−1±12−4⋅1⋅(−1)​​
12−4⋅1⋅(−1)​=5​
12−4⋅1⋅(−1)​
Apply rule 1a=112=1=1−4⋅1⋅(−1)​
Apply rule −(−a)=a=1+4⋅1⋅1​
Multiply the numbers: 4⋅1⋅1=4=1+4​
Add the numbers: 1+4=5=5​
u1,2​=2⋅1−1±5​​
Separate the solutionsu1​=2⋅1−1+5​​,u2​=2⋅1−1−5​​
u=2⋅1−1+5​​:2−1+5​​
2⋅1−1+5​​
Multiply the numbers: 2⋅1=2=2−1+5​​
u=2⋅1−1−5​​:2−1−5​​
2⋅1−1−5​​
Multiply the numbers: 2⋅1=2=2−1−5​​
The solutions to the quadratic equation are:u=2−1+5​​,u=2−1−5​​
Substitute back u=sin(2x)sin(2x)=2−1+5​​,sin(2x)=2−1−5​​
sin(2x)=2−1+5​​,sin(2x)=2−1−5​​
sin(2x)=2−1+5​​,0≤x≤π:x=2arcsin(25​−1​)​,x=2π−arcsin(25​−1​)​
sin(2x)=2−1+5​​,0≤x≤π
Apply trig inverse properties
sin(2x)=2−1+5​​
General solutions for sin(2x)=2−1+5​​sin(x)=a⇒x=arcsin(a)+2πn,x=π−arcsin(a)+2πn2x=arcsin(2−1+5​​)+2πn,2x=π−arcsin(2−1+5​​)+2πn
2x=arcsin(2−1+5​​)+2πn,2x=π−arcsin(2−1+5​​)+2πn
Solve 2x=arcsin(2−1+5​​)+2πn:x=2arcsin(2−1+5​​)​+πn
2x=arcsin(2−1+5​​)+2πn
Divide both sides by 2
2x=arcsin(2−1+5​​)+2πn
Divide both sides by 222x​=2arcsin(2−1+5​​)​+22πn​
Simplifyx=2arcsin(2−1+5​​)​+πn
x=2arcsin(2−1+5​​)​+πn
Solve 2x=π−arcsin(2−1+5​​)+2πn:x=2π​−2arcsin(2−1+5​​)​+πn
2x=π−arcsin(2−1+5​​)+2πn
Divide both sides by 2
2x=π−arcsin(2−1+5​​)+2πn
Divide both sides by 222x​=2π​−2arcsin(2−1+5​​)​+22πn​
Simplifyx=2π​−2arcsin(2−1+5​​)​+πn
x=2π​−2arcsin(2−1+5​​)​+πn
x=2arcsin(2−1+5​​)​+πn,x=2π​−2arcsin(2−1+5​​)​+πn
Solutions for the range 0≤x≤πx=2arcsin(25​−1​)​,x=2π−arcsin(25​−1​)​
sin(2x)=2−1−5​​,0≤x≤π:No Solution
sin(2x)=2−1−5​​,0≤x≤π
−1≤sin(x)≤1NoSolution
Combine all the solutionsx=2arcsin(25​−1​)​,x=2π−arcsin(25​−1​)​
Combine all the solutionsx=2π+arcsin(25​−1​)​,x=2−arcsin(25​−1​)+2π​,x=2arcsin(25​−1​)​,x=2π−arcsin(25​−1​)​
Verify solutions by plugging them into the original equation
Check the solutions by plugging them into tan(2x)=cos(2x)
Remove the ones that don't agree with the equation.
Check the solution 2π+arcsin(25​−1​)​:False
2π+arcsin(25​−1​)​
Plug in n=12π+arcsin(25​−1​)​
For tan(2x)=cos(2x)plug inx=2π+arcsin(25​−1​)​tan​2⋅2π+arcsin(25​−1​)​​=cos​2⋅2π+arcsin(25​−1​)​​
Refine0.78615…=−0.78615…
⇒False
Check the solution 2−arcsin(25​−1​)+2π​:False
2−arcsin(25​−1​)+2π​
Plug in n=12−arcsin(25​−1​)+2π​
For tan(2x)=cos(2x)plug inx=2−arcsin(25​−1​)+2π​tan​2⋅2−arcsin(25​−1​)+2π​​=cos​2⋅2−arcsin(25​−1​)+2π​​
Refine−0.78615…=0.78615…
⇒False
Check the solution 2arcsin(25​−1​)​:True
2arcsin(25​−1​)​
Plug in n=12arcsin(25​−1​)​
For tan(2x)=cos(2x)plug inx=2arcsin(25​−1​)​tan​2⋅2arcsin(25​−1​)​​=cos​2⋅2arcsin(25​−1​)​​
Refine0.78615…=0.78615…
⇒True
Check the solution 2π−arcsin(25​−1​)​:True
2π−arcsin(25​−1​)​
Plug in n=12π−arcsin(25​−1​)​
For tan(2x)=cos(2x)plug inx=2π−arcsin(25​−1​)​tan​2⋅2π−arcsin(25​−1​)​​=cos​2⋅2π−arcsin(25​−1​)​​
Refine−0.78615…=−0.78615…
⇒True
x=2arcsin(25​−1​)​,x=2π−arcsin(25​−1​)​
Show solutions in decimal formx=20.66623…​,x=2π−0.66623…​

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

5sin(2x)=5cos(x),0<= x<= 2pisolvefor x,f=cos(x)cos(hy)tan(x)=-1/10tan(4x)*cot(x+60)=1sin^2(A)+cos^2(A)+sin(A)-2=0

Frequently Asked Questions (FAQ)

  • What is the general solution for tan(2x)=cos(2x),0<= x<= pi ?

    The general solution for tan(2x)=cos(2x),0<= x<= pi is x=(0.66623…)/2 ,x=(pi-0.66623…)/2
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024