Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

sin(x+5)=cos(2x-2)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

sin(x+5)=cos(2x−2)

Solution

x=64πn+π−6​,x=−2π+4πn−14​
+1
Degrees
x=−27.29577…∘+120∘n,x=311.07045…∘−360∘n
Solution steps
sin(x+5)=cos(2x−2)
Rewrite using trig identities
sin(x+5)=cos(2x−2)
Use the following identity: cos(x)=sin(2π​−x)sin(x+5)=sin(2π​−(2x−2))
sin(x+5)=sin(2π​−(2x−2))
Apply trig inverse properties
sin(x+5)=sin(2π​−(2x−2))
sin(x)=sin(y)⇒x=y+2πn,x=π−y+2πnx+5=2π​−(2x−2)+2πn,x+5=π−(2π​−(2x−2))+2πn
x+5=2π​−(2x−2)+2πn,x+5=π−(2π​−(2x−2))+2πn
x+5=2π​−(2x−2)+2πn:x=64πn+π−6​
x+5=2π​−(2x−2)+2πn
Expand 2π​−(2x−2)+2πn:2π​−2x+2+2πn
2π​−(2x−2)+2πn
−(2x−2):−2x+2
−(2x−2)
Distribute parentheses=−(2x)−(−2)
Apply minus-plus rules−(−a)=a,−(a)=−a=−2x+2
=2π​−2x+2+2πn
x+5=2π​−2x+2+2πn
Move 5to the right side
x+5=2π​−2x+2+2πn
Subtract 5 from both sidesx+5−5=2π​−2x+2+2πn−5
Simplify
x+5−5=2π​−2x+2+2πn−5
Simplify x+5−5:x
x+5−5
Add similar elements: 5−5=0
=x
Simplify 2π​−2x+2+2πn−5:−2x+2πn+2π​−3
2π​−2x+2+2πn−5
Group like terms=−2x+2πn+2π​+2−5
Add/Subtract the numbers: 2−5=−3=−2x+2πn+2π​−3
x=−2x+2πn+2π​−3
x=−2x+2πn+2π​−3
x=−2x+2πn+2π​−3
Move 2xto the left side
x=−2x+2πn+2π​−3
Add 2x to both sidesx+2x=−2x+2πn+2π​−3+2x
Simplify3x=2πn+2π​−3
3x=2πn+2π​−3
Divide both sides by 3
3x=2πn+2π​−3
Divide both sides by 333x​=32πn​+32π​​−33​
Simplify
33x​=32πn​+32π​​−33​
Simplify 33x​:x
33x​
Divide the numbers: 33​=1=x
Simplify 32πn​+32π​​−33​:64πn+π−6​
32πn​+32π​​−33​
Apply rule ca​±cb​=ca±b​=32πn+2π​−3​
Join 2πn+2π​−3:24πn+π−6​
2πn+2π​−3
Convert element to fraction: 2πn=22πn2​,3=23⋅2​=22πn⋅2​+2π​−23⋅2​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=22πn⋅2+π−3⋅2​
2πn⋅2+π−3⋅2=4πn+π−6
2πn⋅2+π−3⋅2
Multiply the numbers: 2⋅2=4=4πn+π−3⋅2
Multiply the numbers: 3⋅2=6=4πn+π−6
=24πn+π−6​
=324πn+π−6​​
Apply the fraction rule: acb​​=c⋅ab​=2⋅34πn+π−6​
Multiply the numbers: 2⋅3=6=64πn+π−6​
x=64πn+π−6​
x=64πn+π−6​
x=64πn+π−6​
x+5=π−(2π​−(2x−2))+2πn:x=−2π+4πn−14​
x+5=π−(2π​−(2x−2))+2πn
Expand π−(2π​−(2x−2))+2πn:π−2π​+2x−2+2πn
π−(2π​−(2x−2))+2πn
−(2x−2):−2x+2
−(2x−2)
Distribute parentheses=−(2x)−(−2)
Apply minus-plus rules−(−a)=a,−(a)=−a=−2x+2
=π−(−2x+2+2π​)+2πn
−(2π​−2x+2):−2π​+2x−2
−(2π​−2x+2)
Distribute parentheses=−(2π​)−(−2x)−(2)
Apply minus-plus rules−(−a)=a,−(a)=−a=−2π​+2x−2
=π−2π​+2x−2+2πn
x+5=π−2π​+2x−2+2πn
Move 5to the right side
x+5=π−2π​+2x−2+2πn
Subtract 5 from both sidesx+5−5=π−2π​+2x−2+2πn−5
Simplify
x+5−5=π−2π​+2x−2+2πn−5
Simplify x+5−5:x
x+5−5
Add similar elements: 5−5=0
=x
Simplify π−2π​+2x−2+2πn−5:2x+2πn+π−7−2π​
π−2π​+2x−2+2πn−5
Group like terms=2x+π+2πn−2π​−2−5
Subtract the numbers: −2−5=−7=2x+2πn+π−7−2π​
x=2x+2πn+π−7−2π​
x=2x+2πn+π−7−2π​
x=2x+2πn+π−7−2π​
Move 2xto the left side
x=2x+2πn+π−7−2π​
Subtract 2x from both sidesx−2x=2x+2πn+π−7−2π​−2x
Simplify−x=2πn+π−7−2π​
−x=2πn+π−7−2π​
Divide both sides by −1
−x=2πn+π−7−2π​
Divide both sides by −1−1−x​=−12πn​+−1π​−−17​−−12π​​
Simplify
−1−x​=−12πn​+−1π​−−17​−−12π​​
Simplify −1−x​:x
−1−x​
Apply the fraction rule: −b−a​=ba​=1x​
Apply rule 1a​=a=x
Simplify −12πn​+−1π​−−17​−−12π​​:−2π+4πn−14​
−12πn​+−1π​−−17​−−12π​​
Apply rule ca​±cb​=ca±b​=−12πn+π−7−2π​​
Apply the fraction rule: −ba​=−ba​=−12πn+π−7−2π​​
Join 2πn+π−7−2π​:2π+4πn−14​
2πn+π−7−2π​
Convert element to fraction: 2πn=22πn2​,π=2π2​,7=27⋅2​=22πn⋅2​+2π2​−27⋅2​−2π​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=22πn⋅2+π2−7⋅2−π​
2πn⋅2+π2−7⋅2−π=π+4πn−14
2πn⋅2+π2−7⋅2−π
Group like terms=2π−π+2⋅2πn−7⋅2
Add similar elements: 2π−π=π=π+2⋅2πn−7⋅2
Multiply the numbers: 2⋅2=4=π+4πn−7⋅2
Multiply the numbers: 7⋅2=14=π+4πn−14
=2π+4πn−14​
=−12π+4πn−14​​
Apply the fraction rule: 1a​=a=−2π+4πn−14​
x=−2π+4πn−14​
x=−2π+4πn−14​
x=−2π+4πn−14​
x=64πn+π−6​,x=−2π+4πn−14​
x=64πn+π−6​,x=−2π+4πn−14​

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

solvefor θ,z*p*cos(θ)=ntan(θ)= 1/5 ,csc(θ)6=tan(6C)3/4 =tan(x)cos(x)=-3+4/(cos(x))

Frequently Asked Questions (FAQ)

  • What is the general solution for sin(x+5)=cos(2x-2) ?

    The general solution for sin(x+5)=cos(2x-2) is x=(4pin+pi-6)/6 ,x=-(pi+4pin-14)/2
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024