Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

1-cos^2(x/2)=cos^2(x)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

1−cos2(2x​)=cos2(x)

Solution

x=π+4πn,x=3π+4πn,x=3π​+4πn,x=311π​+4πn,x=35π​+4πn,x=37π​+4πn
+1
Degrees
x=180∘+720∘n,x=540∘+720∘n,x=60∘+720∘n,x=660∘+720∘n,x=300∘+720∘n,x=420∘+720∘n
Solution steps
1−cos2(2x​)=cos2(x)
Subtract cos2(x) from both sides1−cos2(2x​)−cos2(x)=0
Let: u=2x​1−cos2(u)−cos2(2u)=0
Rewrite using trig identities
1−cos2(2u)−cos2(u)
Use the Double Angle identity: cos(2x)=2cos2(x)−1=1−(2cos2(u)−1)2−cos2(u)
Simplify 1−(2cos2(u)−1)2−cos2(u):3cos2(u)−4cos4(u)
1−(2cos2(u)−1)2−cos2(u)
(2cos2(u)−1)2:4cos4(u)−4cos2(u)+1
Apply Perfect Square Formula: (a−b)2=a2−2ab+b2a=2cos2(u),b=1
=(2cos2(u))2−2⋅2cos2(u)⋅1+12
Simplify (2cos2(u))2−2⋅2cos2(u)⋅1+12:4cos4(u)−4cos2(u)+1
(2cos2(u))2−2⋅2cos2(u)⋅1+12
Apply rule 1a=112=1=(2cos2(u))2−2⋅2⋅1⋅cos2(u)+1
(2cos2(u))2=4cos4(u)
(2cos2(u))2
Apply exponent rule: (a⋅b)n=anbn=22(cos2(u))2
(cos2(u))2:cos4(u)
Apply exponent rule: (ab)c=abc=cos2⋅2(u)
Multiply the numbers: 2⋅2=4=cos4(u)
=22cos4(u)
22=4=4cos4(u)
2⋅2cos2(u)⋅1=4cos2(u)
2⋅2cos2(u)⋅1
Multiply the numbers: 2⋅2⋅1=4=4cos2(u)
=4cos4(u)−4cos2(u)+1
=4cos4(u)−4cos2(u)+1
=1−(4cos4(u)−4cos2(u)+1)−cos2(u)
−(4cos4(u)−4cos2(u)+1):−4cos4(u)+4cos2(u)−1
−(4cos4(u)−4cos2(u)+1)
Distribute parentheses=−(4cos4(u))−(−4cos2(u))−(1)
Apply minus-plus rules−(−a)=a,−(a)=−a=−4cos4(u)+4cos2(u)−1
=1−4cos4(u)+4cos2(u)−1−cos2(u)
Simplify 1−4cos4(u)+4cos2(u)−1−cos2(u):3cos2(u)−4cos4(u)
1−4cos4(u)+4cos2(u)−1−cos2(u)
Group like terms=−4cos4(u)+4cos2(u)−cos2(u)+1−1
Add similar elements: 4cos2(u)−cos2(u)=3cos2(u)=−4cos4(u)+3cos2(u)+1−1
1−1=0=3cos2(u)−4cos4(u)
=3cos2(u)−4cos4(u)
=3cos2(u)−4cos4(u)
3cos2(u)−4cos4(u)=0
Solve by substitution
3cos2(u)−4cos4(u)=0
Let: cos(u)=u3u2−4u4=0
3u2−4u4=0:u=0,u=23​​,u=−23​​
3u2−4u4=0
Write in the standard form an​xn+…+a1​x+a0​=0−4u4+3u2=0
Rewrite the equation with v=u2 and v2=u4−4v2+3v=0
Solve −4v2+3v=0:v=0,v=43​
−4v2+3v=0
Solve with the quadratic formula
−4v2+3v=0
Quadratic Equation Formula:
For a=−4,b=3,c=0v1,2​=2(−4)−3±32−4(−4)⋅0​​
v1,2​=2(−4)−3±32−4(−4)⋅0​​
32−4(−4)⋅0​=3
32−4(−4)⋅0​
Apply rule −(−a)=a=32+4⋅4⋅0​
Apply rule 0⋅a=0=32+0​
32+0=32=32​
Apply radical rule: assuming a≥0=3
v1,2​=2(−4)−3±3​
Separate the solutionsv1​=2(−4)−3+3​,v2​=2(−4)−3−3​
v=2(−4)−3+3​:0
2(−4)−3+3​
Remove parentheses: (−a)=−a=−2⋅4−3+3​
Add/Subtract the numbers: −3+3=0=−2⋅40​
Multiply the numbers: 2⋅4=8=−80​
Apply the fraction rule: −ba​=−ba​=−80​
Apply rule a0​=0,a=0=−0
=0
v=2(−4)−3−3​:43​
2(−4)−3−3​
Remove parentheses: (−a)=−a=−2⋅4−3−3​
Subtract the numbers: −3−3=−6=−2⋅4−6​
Multiply the numbers: 2⋅4=8=−8−6​
Apply the fraction rule: −b−a​=ba​=86​
Cancel the common factor: 2=43​
The solutions to the quadratic equation are:v=0,v=43​
v=0,v=43​
Substitute back v=u2,solve for u
Solve u2=0:u=0
u2=0
Apply rule xn=0⇒x=0
u=0
Solve u2=43​:u=23​​,u=−23​​
u2=43​
For x2=f(a) the solutions are x=f(a)​,−f(a)​
u=43​​,u=−43​​
43​​=23​​
43​​
Apply radical rule: assuming a≥0,b≥0=4​3​​
4​=2
4​
Factor the number: 4=22=22​
Apply radical rule: 22​=2=2
=23​​
−43​​=−23​​
−43​​
Simplify 43​​:23​​
43​​
Apply radical rule: assuming a≥0,b≥0=4​3​​
4​=2
4​
Factor the number: 4=22=22​
Apply radical rule: 22​=2=2
=23​​
=−23​​
u=23​​,u=−23​​
The solutions are
u=0,u=23​​,u=−23​​
Substitute back u=cos(u)cos(u)=0,cos(u)=23​​,cos(u)=−23​​
cos(u)=0,cos(u)=23​​,cos(u)=−23​​
cos(u)=0:u=2π​+2πn,u=23π​+2πn
cos(u)=0
General solutions for cos(u)=0
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
u=2π​+2πn,u=23π​+2πn
u=2π​+2πn,u=23π​+2πn
cos(u)=23​​:u=6π​+2πn,u=611π​+2πn
cos(u)=23​​
General solutions for cos(u)=23​​
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
u=6π​+2πn,u=611π​+2πn
u=6π​+2πn,u=611π​+2πn
cos(u)=−23​​:u=65π​+2πn,u=67π​+2πn
cos(u)=−23​​
General solutions for cos(u)=−23​​
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
u=65π​+2πn,u=67π​+2πn
u=65π​+2πn,u=67π​+2πn
Combine all the solutionsu=2π​+2πn,u=23π​+2πn,u=6π​+2πn,u=611π​+2πn,u=65π​+2πn,u=67π​+2πn
Substitute back u=2x​
2x​=2π​+2πn:x=π+4πn
2x​=2π​+2πn
Multiply both sides by 2
2x​=2π​+2πn
Multiply both sides by 222x​=2⋅2π​+2⋅2πn
Simplify
22x​=2⋅2π​+2⋅2πn
Simplify 22x​:x
22x​
Divide the numbers: 22​=1=x
Simplify 2⋅2π​+2⋅2πn:π+4πn
2⋅2π​+2⋅2πn
2⋅2π​=π
2⋅2π​
Multiply fractions: a⋅cb​=ca⋅b​=2π2​
Cancel the common factor: 2=π
2⋅2πn=4πn
2⋅2πn
Multiply the numbers: 2⋅2=4=4πn
=π+4πn
x=π+4πn
x=π+4πn
x=π+4πn
2x​=23π​+2πn:x=3π+4πn
2x​=23π​+2πn
Multiply both sides by 2
2x​=23π​+2πn
Multiply both sides by 222x​=2⋅23π​+2⋅2πn
Simplify
22x​=2⋅23π​+2⋅2πn
Simplify 22x​:x
22x​
Divide the numbers: 22​=1=x
Simplify 2⋅23π​+2⋅2πn:3π+4πn
2⋅23π​+2⋅2πn
2⋅23π​=3π
2⋅23π​
Multiply fractions: a⋅cb​=ca⋅b​=23π2​
Cancel the common factor: 2=3π
2⋅2πn=4πn
2⋅2πn
Multiply the numbers: 2⋅2=4=4πn
=3π+4πn
x=3π+4πn
x=3π+4πn
x=3π+4πn
2x​=6π​+2πn:x=3π​+4πn
2x​=6π​+2πn
Multiply both sides by 2
2x​=6π​+2πn
Multiply both sides by 222x​=2⋅6π​+2⋅2πn
Simplify
22x​=2⋅6π​+2⋅2πn
Simplify 22x​:x
22x​
Divide the numbers: 22​=1=x
Simplify 2⋅6π​+2⋅2πn:3π​+4πn
2⋅6π​+2⋅2πn
2⋅6π​=3π​
2⋅6π​
Multiply fractions: a⋅cb​=ca⋅b​=6π2​
Cancel the common factor: 2=3π​
2⋅2πn=4πn
2⋅2πn
Multiply the numbers: 2⋅2=4=4πn
=3π​+4πn
x=3π​+4πn
x=3π​+4πn
x=3π​+4πn
2x​=611π​+2πn:x=311π​+4πn
2x​=611π​+2πn
Multiply both sides by 2
2x​=611π​+2πn
Multiply both sides by 222x​=2⋅611π​+2⋅2πn
Simplify
22x​=2⋅611π​+2⋅2πn
Simplify 22x​:x
22x​
Divide the numbers: 22​=1=x
Simplify 2⋅611π​+2⋅2πn:311π​+4πn
2⋅611π​+2⋅2πn
2⋅611π​=311π​
2⋅611π​
Multiply fractions: a⋅cb​=ca⋅b​=611π2​
Multiply the numbers: 11⋅2=22=622π​
Cancel the common factor: 2=311π​
2⋅2πn=4πn
2⋅2πn
Multiply the numbers: 2⋅2=4=4πn
=311π​+4πn
x=311π​+4πn
x=311π​+4πn
x=311π​+4πn
2x​=65π​+2πn:x=35π​+4πn
2x​=65π​+2πn
Multiply both sides by 2
2x​=65π​+2πn
Multiply both sides by 222x​=2⋅65π​+2⋅2πn
Simplify
22x​=2⋅65π​+2⋅2πn
Simplify 22x​:x
22x​
Divide the numbers: 22​=1=x
Simplify 2⋅65π​+2⋅2πn:35π​+4πn
2⋅65π​+2⋅2πn
2⋅65π​=35π​
2⋅65π​
Multiply fractions: a⋅cb​=ca⋅b​=65π2​
Multiply the numbers: 5⋅2=10=610π​
Cancel the common factor: 2=35π​
2⋅2πn=4πn
2⋅2πn
Multiply the numbers: 2⋅2=4=4πn
=35π​+4πn
x=35π​+4πn
x=35π​+4πn
x=35π​+4πn
2x​=67π​+2πn:x=37π​+4πn
2x​=67π​+2πn
Multiply both sides by 2
2x​=67π​+2πn
Multiply both sides by 222x​=2⋅67π​+2⋅2πn
Simplify
22x​=2⋅67π​+2⋅2πn
Simplify 22x​:x
22x​
Divide the numbers: 22​=1=x
Simplify 2⋅67π​+2⋅2πn:37π​+4πn
2⋅67π​+2⋅2πn
2⋅67π​=37π​
2⋅67π​
Multiply fractions: a⋅cb​=ca⋅b​=67π2​
Multiply the numbers: 7⋅2=14=614π​
Cancel the common factor: 2=37π​
2⋅2πn=4πn
2⋅2πn
Multiply the numbers: 2⋅2=4=4πn
=37π​+4πn
x=37π​+4πn
x=37π​+4πn
x=37π​+4πn
x=π+4πn,x=3π+4πn,x=3π​+4πn,x=311π​+4πn,x=35π​+4πn,x=37π​+4πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

1=2sin(2θ)cos(-x)=(sqrt(3))/2sin(x)=0.61366sin(α)=-15/17sin(62.8x+pi/4)=sin(pi/4)
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024