Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

1/2 cos^2(2x)+tan(162)=0

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

21​cos2(2x)+tan(162∘)=0

Solution

x=20.63322…​+180∘n,x=180∘−20.63322…​+180∘n,x=22.50837…​+180∘n,x=−22.50837…​+180∘n
+1
Radians
x=20.63322…​+πn,x=π−20.63322…​+πn,x=22.50837…​+πn,x=−22.50837…​+πn
Solution steps
21​cos2(2x)+tan(162∘)=0
tan(162∘)=−55−25​​​
tan(162∘)
Rewrite using trig identities:−tan(18∘)
tan(162∘)
Use the following identity:tan(x)=−tan(180∘−x)
tan(x)
Use the following property: tan(θ)=−tan(−θ)tan(x)=−tan(−x)=−tan(−x)
Apply the periodicity of tan: tan(180∘+θ)=tan(θ)−tan(−x)=−tan(180∘−x)=−tan(180∘−x)
=−tan(360∘−162∘)
Simplify:360∘−162∘=198∘
360∘−162∘
Convert element to fraction: 360∘=360∘=360∘−162∘
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=10360∘10−1620∘​
360∘10−1620∘=1980∘
360∘10−1620∘
Multiply the numbers: 2⋅10=20=3600∘−1620∘
Add similar elements: 3600∘−1620∘=1980∘=1980∘
=198∘
=−tan(198∘)
tan(198∘)=tan(18∘)
tan(198∘)
Rewrite 198∘ as 180∘+18∘=tan(180∘+18∘)
Apply the periodicity of tan: tan(x+180∘)=tan(x)tan(180∘+18∘)=tan(18∘)=tan(18∘)
=−tan(18∘)
=−tan(18∘)
Rewrite using trig identities:tan(18∘)=55−25​​​
tan(18∘)
Rewrite using trig identities:1+cos(36∘)1−cos(36∘)​​
tan(18∘)
Write tan(18∘)as tan(236∘​)=tan(236∘​)
Use the Half Angle identity:tan(2θ​)=1+cos(θ)1−cos(θ)​​
Rewrite using trig identities:tan2(θ)=1+cos(2θ)1−cos(2θ)​
Use the following identity
tan(θ)=cos(θ)sin(θ)​
Square both sidestan2(θ)=cos2(θ)sin2(θ)​
Rewrite using trig identities:sin2(θ)=21−cos(2θ)​
Use the Double Angle identitycos(2θ)=1−2sin2(θ)
Switch sides2sin2(θ)−1=−cos(2θ)
Add 1 to both sides2sin2(θ)=1−cos(2θ)
Divide both sides by 2sin2(θ)=21−cos(2θ)​
Rewrite using trig identities:cos2(θ)=21+cos(2θ)​
Use the Double Angle identitycos(2θ)=2cos2(θ)−1
Switch sides2cos2(θ)−1=cos(2θ)
Add 1 to both sides2sin2(θ)=1+cos(2θ)
Divide both sides by 2cos2(θ)=21+cos(2θ)​
tan2(θ)=21+cos(2θ)​21−cos(2θ)​​
Simplifytan2(θ)=1+cos(2θ)1−cos(2θ)​
Substitute θ with 2θ​tan2(2θ​)=1+cos(2⋅2θ​)1−cos(2⋅2θ​)​
Simplifytan2(2θ​)=1+cos(θ)1−cos(θ)​
Square root both sides
Choose the root sign according to the quadrant of 2θ​:
range[0,90∘][90∘,180∘]​quadrantIII​tanpositivenegative​​
tan(2θ​)=1+cos(θ)1−cos(θ)​​
=1+cos(36∘)1−cos(36∘)​​
=1+cos(36∘)1−cos(36∘)​​
Rewrite using trig identities:cos(36∘)=45​+1​
cos(36∘)
Show that: cos(36∘)−sin(18∘)=21​
Use the following product to sum identity: 2sin(x)cos(y)=sin(x+y)−sin(x−y)2cos(36∘)sin(18∘)=sin(54∘)−sin(18∘)
Show that: 2cos(36∘)sin(18∘)=21​
Use the Double Angle identity: sin(2x)=2sin(x)cos(x)sin(72∘)=2sin(36∘)cos(36∘)sin(72∘)sin(36∘)=4sin(36∘)sin(18∘)cos(36∘)cos(18∘)
Divide both sides by sin(36∘)sin(72∘)=4sin(18∘)cos(36∘)cos(18∘)
Use the following identity: sin(x)=cos(90∘−x)sin(72∘)=cos(90∘−72∘)cos(90∘−72∘)=4sin(18∘)cos(36∘)cos(18∘)
cos(18∘)=4sin(18∘)cos(36∘)cos(18∘)
Divide both sides by cos(18∘)1=4sin(18∘)cos(36∘)
Divide both sides by 221​=2sin(18∘)cos(36∘)
Substitute 21​=2sin(18∘)cos(36∘)21​=sin(54∘)−sin(18∘)
sin(54∘)=cos(90∘−54∘)21​=cos(90∘−54∘)−sin(18∘)
21​=cos(36∘)−sin(18∘)
Show that: cos(36∘)+sin(18∘)=45​​
Use the factorization rule: a2−b2=(a+b)(a−b)a=cos(36∘)+sin(18∘)(cos(36∘)+sin(18∘))2−(cos(36∘)−sin(18∘))2=((cos(36∘)+sin(18∘))+(cos(36∘)−sin(18∘)))((cos(36∘)+sin(18∘))−(cos(36∘)−sin(18∘)))
Refine(cos(36∘)+sin(18∘))2−(cos(36∘)−sin(18∘))2=2(2cos(36∘)sin(18∘))
Show that: 2cos(36∘)sin(18∘)=21​
Use the Double Angle identity: sin(2x)=2sin(x)cos(x)sin(72∘)=2sin(36∘)cos(36∘)sin(72∘)sin(36∘)=4sin(36∘)sin(18∘)cos(36∘)cos(18∘)
Divide both sides by sin(36∘)sin(72∘)=4sin(18∘)cos(36∘)cos(18∘)
Use the following identity: sin(x)=cos(90∘−x)sin(72∘)=cos(90∘−72∘)cos(90∘−72∘)=4sin(18∘)cos(36∘)cos(18∘)
cos(18∘)=4sin(18∘)cos(36∘)cos(18∘)
Divide both sides by cos(18∘)1=4sin(18∘)cos(36∘)
Divide both sides by 221​=2sin(18∘)cos(36∘)
Substitute 2cos(36∘)sin(18∘)=21​(cos(36∘)+sin(18∘))2−(cos(36∘)−sin(18∘))2=1
Substitute cos(36∘)−sin(18∘)=21​(cos(36∘)+sin(18∘))2−(21​)2=1
Refine(cos(36∘)+sin(18∘))2−41​=1
Add 41​ to both sides(cos(36∘)+sin(18∘))2−41​+41​=1+41​
Refine(cos(36∘)+sin(18∘))2=45​
Take the square root of both sidescos(36∘)+sin(18∘)=±45​​
cos(36∘)cannot be negativesin(18∘)cannot be negativecos(36∘)+sin(18∘)=45​​
Add the following equationscos(36∘)+sin(18∘)=25​​((cos(36∘)+sin(18∘))+(cos(36∘)−sin(18∘)))=(25​​+21​)
Refinecos(36∘)=45​+1​
=45​+1​
=1+45​+1​1−45​+1​​​
Simplify 1+45​+1​1−45​+1​​​:55−25​​​
1+45​+1​1−45​+1​​​
1+45​+1​1−45​+1​​=5+5​3−5​​
1+45​+1​1−45​+1​​
Join 1+45​+1​:45+5​​
1+45​+1​
Convert element to fraction: 1=41⋅4​=41⋅4​+45​+1​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=41⋅4+5​+1​
1⋅4+5​+1=5+5​
1⋅4+5​+1
Multiply the numbers: 1⋅4=4=4+5​+1
Add the numbers: 4+1=5=5+5​
=45+5​​
=45+5​​1−41+5​​​
Join 1−45​+1​:43−5​​
1−45​+1​
Convert element to fraction: 1=41⋅4​=41⋅4​−45​+1​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=41⋅4−(5​+1)​
Multiply the numbers: 1⋅4=4=44−(1+5​)​
Expand 4−(5​+1):3−5​
4−(5​+1)
−(5​+1):−5​−1
−(5​+1)
Distribute parentheses=−(5​)−(1)
Apply minus-plus rules+(−a)=−a=−5​−1
=4−5​−1
Subtract the numbers: 4−1=3=3−5​
=43−5​​
=45+5​​43−5​​​
Divide fractions: dc​ba​​=b⋅ca⋅d​=4(5+5​)(3−5​)⋅4​
Cancel the common factor: 4=5+5​3−5​​
=5+5​3−5​​​
5+5​3−5​​=55−25​​
5+5​3−5​​
Multiply by the conjugate 5−5​5−5​​=(5+5​)(5−5​)(3−5​)(5−5​)​
(3−5​)(5−5​)=20−85​
(3−5​)(5−5​)
Apply FOIL method: (a+b)(c+d)=ac+ad+bc+bda=3,b=−5​,c=5,d=−5​=3⋅5+3(−5​)+(−5​)⋅5+(−5​)(−5​)
Apply minus-plus rules+(−a)=−a,(−a)(−b)=ab=3⋅5−35​−55​+5​5​
Simplify 3⋅5−35​−55​+5​5​:20−85​
3⋅5−35​−55​+5​5​
Add similar elements: −35​−55​=−85​=3⋅5−85​+5​5​
Multiply the numbers: 3⋅5=15=15−85​+5​5​
Apply radical rule: a​a​=a5​5​=5=15−85​+5
Add the numbers: 15+5=20=20−85​
=20−85​
(5+5​)(5−5​)=20
(5+5​)(5−5​)
Apply Difference of Two Squares Formula: (a+b)(a−b)=a2−b2a=5,b=5​=52−(5​)2
Simplify 52−(5​)2:20
52−(5​)2
52=25
52
52=25=25
(5​)2=5
(5​)2
Apply radical rule: a​=a21​=(521​)2
Apply exponent rule: (ab)c=abc=521​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=5
=25−5
Subtract the numbers: 25−5=20=20
=20
=2020−85​​
Factor 20−85​:4(5−25​)
20−85​
Rewrite as=4⋅5−4⋅25​
Factor out common term 4=4(5−25​)
=204(5−25​)​
Cancel the common factor: 4=55−25​​
=55−25​​​
=55−25​​​
=−55−25​​​
21​cos2(2x)+−55−25​​​=0
Rewrite using trig identities
−55−25​​​+cos2(2x)21​
Use the basic trigonometric identity: cos(x)=sec(x)1​=−55−25​​​+(sec(2x)1​)221​
Simplify −55−25​​​+(sec(2x)1​)221​:−5​5​−2​​+2sec2(2x)1​
−55−25​​​+(sec(2x)1​)221​
55−25​​​=5​5​−2​​
55−25​​​
55−25​​=5​5​−2​
55−25​​
Factor 5−25​:5​(5​−2)
5−25​
5=5​5​=5​5​−25​
Factor out common term 5​=5​(5​−2)
=55​(5​−2)​
Cancel 55​(5​−2)​:5​5​−2​
55​(5​−2)​
Apply radical rule: 5​=521​=5521​(5​−2)​
Apply exponent rule: xbxa​=xb−a1​51521​​=51−21​1​=51−21​5​−2​
Subtract the numbers: 1−21​=21​=521​5​−2​
Apply radical rule: 521​=5​=5​5​−2​
=5​5​−2​
=5​5​−2​​
(sec(2x)1​)221​=2sec2(2x)1​
(sec(2x)1​)221​
(sec(2x)1​)2=sec2(2x)1​
(sec(2x)1​)2
Apply exponent rule: (ba​)c=bcac​=sec2(2x)12​
Apply rule 1a=112=1=sec2(2x)1​
=21​⋅sec2(2x)1​
Multiply fractions: ba​⋅dc​=b⋅da⋅c​=sec2(2x)⋅21⋅1​
Multiply the numbers: 1⋅1=1=2sec2(2x)1​
=−5​5​−2​​+2sec2(2x)1​
=−5​5​−2​​+2sec2(2x)1​
2sec2(2x)1​−5​−2+5​​​=0
Solve by substitution
2sec2(2x)1​−5​−2+5​​​=0
Let: sec(2x)=u2u21​−5​−2+5​​​=0
2u21​−5​−2+5​​​=0:u=2(2+5​)5−25​​​​,u=−2(2+5​)5−25​​​​
2u21​−5​−2+5​​​=0
Multiply both sides by 2u2
2u21​−5​−2+5​​​=0
Multiply both sides by 2u22u21​⋅2u2−5​−2+5​​​⋅2u2=0⋅2u2
Simplify
2u21​⋅2u2−5​−2+5​​​⋅2u2=0⋅2u2
Simplify 2u21​⋅2u2:1
2u21​⋅2u2
Multiply fractions: a⋅cb​=ca⋅b​=2u21⋅2u2​
Cancel the common factor: 2=u21⋅u2​
Cancel the common factor: u2=1
Simplify −5​−2+5​​​⋅2u2:−25−25​+5​​u2
−5​−2+5​​​⋅2u2
5​−2+5​​​=5−25​+5​​
5​−2+5​​​
5​−2+5​​=5−25​+5​
5​−2+5​​
Multiply by the conjugate 5​5​​=5​5​(−2+5​)5​​
(−2+5​)5​=−25​+5
(−2+5​)5​
=5​(−2+5​)
Apply the distributive law: a(b+c)=ab+aca=5​,b=−2,c=5​=5​(−2)+5​5​
Apply minus-plus rules+(−a)=−a=−25​+5​5​
Apply radical rule: a​a​=a5​5​=5=−25​+5
5​5​=5
5​5​
Apply radical rule: a​a​=a5​5​=5=5
=5−25​+5​
=5−25​+5​​
=−255−25​​​u2
Simplify 0⋅2u2:0
0⋅2u2
Apply rule 0⋅a=0=0
1−25−25​+5​​u2=0
1−25−25​+5​​u2=0
1−25−25​+5​​u2=0
Solve 1−25−25​+5​​u2=0:u=2(2+5​)5−25​​​​,u=−2(2+5​)5−25​​​​
1−25−25​+5​​u2=0
Move 1to the right side
1−25−25​+5​​u2=0
Subtract 1 from both sides1−25−25​+5​​u2−1=0−1
Simplify−25−25​+5​​u2=−1
−25−25​+5​​u2=−1
Divide both sides by −25−25​+5​​
−25−25​+5​​u2=−1
Divide both sides by −25−25​+5​​−25−25​+5​​−25−25​+5​​u2​=−25−25​+5​​−1​
Simplify
−25−25​+5​​−25−25​+5​​u2​=−25−25​+5​​−1​
Simplify −25−25​+5​​−25−25​+5​​u2​:u2
−25−25​+5​​−25−25​+5​​u2​
Apply the fraction rule: −b−a​=ba​=25−25​+5​​25−25​+5​​u2​
Divide the numbers: 22​=1=5−25​+5​​55−25​​​u2​
Cancel the common factor: 5−25​+5​​=u2
Simplify −25−25​+5​​−1​:2(2+5​)5−25​​​
−25−25​+5​​−1​
Apply the fraction rule: −b−a​=ba​=25−25​+5​​1​
5−25​+5​​=5​−25​+5​​
5−25​+5​​
Apply radical rule: assuming a≥0,b≥0=5​−25​+5​​
=2⋅5​5−25​​​1​
Multiply 2⋅5​−25​+5​​:5​25−25​​​
2⋅5​−25​+5​​
Multiply fractions: a⋅cb​=ca⋅b​=5​−25​+5​⋅2​
=5​25−25​​​1​
Apply the fraction rule: cb​1​=bc​=−25​+5​⋅25​​
Rationalize 25−25​​5​​:2(2+5​)5−25​​​
25−25​​5​​
Multiply by the conjugate −25​+5​−25​+5​​=−25​+5​⋅2−25​+5​5​−25​+5​​
−25​+5​⋅2−25​+5​=−45​+10
−25​+5​⋅2−25​+5​
Apply radical rule: a​a​=a5−25​​5−25​​=−25​+5=2(5−25​)
Apply the distributive law: a(b+c)=ab+aca=2,b=−25​,c=5=2(−25​)+2⋅5
Apply minus-plus rules+(−a)=−a=−2⋅25​+2⋅5
Simplify −2⋅25​+2⋅5:−45​+10
−2⋅25​+2⋅5
Multiply the numbers: 2⋅2=4=−45​+2⋅5
Multiply the numbers: 2⋅5=10=−45​+10
=−45​+10
=−45​+105​−25​+5​​
Factor out common term −2:−2(25​−5)
−45​+10
Rewrite 10 as 2⋅5Rewrite 4 as 2⋅2=−2⋅25​+2⋅5
Factor out common term −2=−2(25​−5)
=−2(25​−5)5​−25​+5​​
Cancel −2(25​−5)5​−25​+5​​:2(5−25​)5​−25​+5​​
−2(25​−5)5​−25​+5​​
25​−5=−(5−25​)=−−2(5−25​)5​5−25​​​
Refine=2(5−25​)5​−25​+5​​
=2(5−25​)5​−25​+5​​
Multiply by the conjugate 5+25​5+25​​=2(5−25​)(5+25​)5​−25​+5​(5+25​)​
5​−25​+5​(5+25​)=55​−25​+5​+10−25​+5​
5​−25​+5​(5+25​)
=5​(5+25​)−25​+5​
Apply the distributive law: a(b+c)=ab+aca=5​−25​+5​,b=5,c=25​=5​−25​+5​⋅5+5​−25​+5​⋅25​
=55​−25​+5​+25​5​−25​+5​
25​5​−25​+5​=10−25​+5​
25​5​−25​+5​
Apply radical rule: a​a​=a5​5​=5=2⋅55−25​​
Multiply the numbers: 2⋅5=10=105−25​​
=55​−25​+5​+10−25​+5​
2(5−25​)(5+25​)=10
2(5−25​)(5+25​)
Expand (5−25​)(5+25​):5
(5−25​)(5+25​)
Apply Difference of Two Squares Formula: (a−b)(a+b)=a2−b2a=5,b=25​=52−(25​)2
Simplify 52−(25​)2:5
52−(25​)2
52=25
52
52=25=25
(25​)2=20
(25​)2
Apply exponent rule: (a⋅b)n=anbn=22(5​)2
(5​)2:5
Apply radical rule: a​=a21​=(521​)2
Apply exponent rule: (ab)c=abc=521​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=5
=22⋅5
22=4=4⋅5
Multiply the numbers: 4⋅5=20=20
=25−20
Subtract the numbers: 25−20=5=5
=5
=2⋅5
Expand 2⋅5:10
2⋅5
Distribute parentheses=2⋅5
Multiply the numbers: 2⋅5=10=10
=10
=1055​−25​+5​+10−25​+5​​
Factor 55​−25​+5​+10−25​+5​:55−25​​(5​+2)
55​−25​+5​+10−25​+5​
Rewrite as=55−25​​5​+2⋅55−25​​
Factor out common term 55−25​​=55−25​​(5​+2)
=1055−25​​(5​+2)​
Cancel the common factor: 5=2(2+5​)5−25​​​
=2(2+5​)5−25​​​
u2=2(2+5​)5−25​​​
u2=2(2+5​)5−25​​​
u2=2(2+5​)5−25​​​
For x2=f(a) the solutions are x=f(a)​,−f(a)​
u=2(2+5​)5−25​​​​,u=−2(2+5​)5−25​​​​
u=2(2+5​)5−25​​​​,u=−2(2+5​)5−25​​​​
Verify Solutions
Find undefined (singularity) points:u=0
Take the denominator(s) of 2u21​−5​−2+5​​​ and compare to zero
Solve 2u2=0:u=0
2u2=0
Divide both sides by 2
2u2=0
Divide both sides by 2
2u2=0
Divide both sides by 222u2​=20​
Simplifyu2=0
u2=0
Apply rule xn=0⇒x=0
u=0
The following points are undefinedu=0
Combine undefined points with solutions:
u=2(2+5​)5−25​​​​,u=−2(2+5​)5−25​​​​
Substitute back u=sec(2x)sec(2x)=2(2+5​)5−25​​​​,sec(2x)=−2(2+5​)5−25​​​​
sec(2x)=2(2+5​)5−25​​​​,sec(2x)=−2(2+5​)5−25​​​​
sec(2x)=2(2+5​)5−25​​​​:x=2arcsec(2(2+5​)5−25​​​​)​+180∘n,x=180∘−2arcsec(2(2+5​)5−25​​​​)​+180∘n
sec(2x)=2(2+5​)5−25​​​​
Apply trig inverse properties
sec(2x)=2(2+5​)5−25​​​​
General solutions for sec(2x)=2(2+5​)5−25​​​​sec(x)=a⇒x=arcsec(a)+360∘n,x=360∘−arcsec(a)+360∘n2x=arcsec​2(2+5​)5−25​​​​​+360∘n,2x=360∘−arcsec​2(2+5​)5−25​​​​​+360∘n
2x=arcsec​2(2+5​)5−25​​​​​+360∘n,2x=360∘−arcsec​2(2+5​)5−25​​​​​+360∘n
Solve 2x=arcsec​2(2+5​)5−25​​​​​+360∘n:x=2arcsec(2(2+5​)5−25​​​​)​+180∘n
2x=arcsec​2(2+5​)5−25​​​​​+360∘n
Divide both sides by 2
2x=arcsec​2(2+5​)5−25​​​​​+360∘n
Divide both sides by 222x​=2arcsec(2(2+5​)5−25​​​​)​+2360∘n​
Simplifyx=2arcsec(2(2+5​)5−25​​​​)​+180∘n
x=2arcsec(2(2+5​)5−25​​​​)​+180∘n
Solve 2x=360∘−arcsec​2(2+5​)5−25​​​​​+360∘n:x=180∘−2arcsec(2(2+5​)5−25​​​​)​+180∘n
2x=360∘−arcsec​2(2+5​)5−25​​​​​+360∘n
Divide both sides by 2
2x=360∘−arcsec​2(2+5​)5−25​​​​​+360∘n
Divide both sides by 222x​=180∘−2arcsec(2(2+5​)5−25​​​​)​+2360∘n​
Simplifyx=180∘−2arcsec(2(2+5​)5−25​​​​)​+180∘n
x=180∘−2arcsec(2(2+5​)5−25​​​​)​+180∘n
x=2arcsec(2(2+5​)5−25​​​​)​+180∘n,x=180∘−2arcsec(2(2+5​)5−25​​​​)​+180∘n
sec(2x)=−2(2+5​)5−25​​​​:x=2arcsec(−2(2+5​)5−25​​​​)​+180∘n,x=−2arcsec(−2(2+5​)5−25​​​​)​+180∘n
sec(2x)=−2(2+5​)5−25​​​​
Apply trig inverse properties
sec(2x)=−2(2+5​)5−25​​​​
General solutions for sec(2x)=−2(2+5​)5−25​​​​sec(x)=−a⇒x=arcsec(−a)+360∘n,x=−arcsec(−a)+360∘n2x=arcsec​−2(2+5​)5−25​​​​​+360∘n,2x=−arcsec​−2(2+5​)5−25​​​​​+360∘n
2x=arcsec​−2(2+5​)5−25​​​​​+360∘n,2x=−arcsec​−2(2+5​)5−25​​​​​+360∘n
Solve 2x=arcsec​−2(2+5​)5−25​​​​​+360∘n:x=2arcsec(−2(2+5​)5−25​​​​)​+180∘n
2x=arcsec​−2(2+5​)5−25​​​​​+360∘n
Divide both sides by 2
2x=arcsec​−2(2+5​)5−25​​​​​+360∘n
Divide both sides by 222x​=2arcsec(−2(2+5​)5−25​​​​)​+2360∘n​
Simplifyx=2arcsec(−2(2+5​)5−25​​​​)​+180∘n
x=2arcsec(−2(2+5​)5−25​​​​)​+180∘n
Solve 2x=−arcsec​−2(2+5​)5−25​​​​​+360∘n:x=−2arcsec(−2(2+5​)5−25​​​​)​+180∘n
2x=−arcsec​−2(2+5​)5−25​​​​​+360∘n
Divide both sides by 2
2x=−arcsec​−2(2+5​)5−25​​​​​+360∘n
Divide both sides by 222x​=−2arcsec(−2(2+5​)5−25​​​​)​+2360∘n​
Simplifyx=−2arcsec(−2(2+5​)5−25​​​​)​+180∘n
x=−2arcsec(−2(2+5​)5−25​​​​)​+180∘n
x=2arcsec(−2(2+5​)5−25​​​​)​+180∘n,x=−2arcsec(−2(2+5​)5−25​​​​)​+180∘n
Combine all the solutionsx=2arcsec(2(2+5​)5−25​​​​)​+180∘n,x=180∘−2arcsec(2(2+5​)5−25​​​​)​+180∘n,x=2arcsec(−2(2+5​)5−25​​​​)​+180∘n,x=−2arcsec(−2(2+5​)5−25​​​​)​+180∘n
Show solutions in decimal formx=20.63322…​+180∘n,x=180∘−20.63322…​+180∘n,x=22.50837…​+180∘n,x=−22.50837…​+180∘n

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

1+cot^2(a)=tan^2(a)tan(α)=(12)/(6sqrt(3))1=cos^2(α)-2cos(α)sin(a)+sin^2(α)4sin(θ)=1sin(x+pi/2)=0.6

Frequently Asked Questions (FAQ)

  • What is the general solution for 1/2 cos^2(2x)+tan(162)=0 ?

    The general solution for 1/2 cos^2(2x)+tan(162)=0 is
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024