Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

tan^2(γ)+1=cos^2(γ)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

tan2(γ)+1=cos2(γ)

Solution

γ=2πn,γ=π+2πn
+1
Degrees
γ=0∘+360∘n,γ=180∘+360∘n
Solution steps
tan2(γ)+1=cos2(γ)
Subtract cos2(γ) from both sidestan2(γ)+1−cos2(γ)=0
Rewrite using trig identities
1−cos2(γ)+tan2(γ)
Use the Pythagorean identity: tan2(x)+1=sec2(x)=−cos2(γ)+sec2(γ)
Use the basic trigonometric identity: cos(x)=sec(x)1​=−(sec(γ)1​)2+sec2(γ)
(sec(γ)1​)2=sec2(γ)1​
(sec(γ)1​)2
Apply exponent rule: (ba​)c=bcac​=sec2(γ)12​
Apply rule 1a=112=1=sec2(γ)1​
=−sec2(γ)1​+sec2(γ)
−sec2(γ)1​+sec2(γ)=0
Solve by substitution
−sec2(γ)1​+sec2(γ)=0
Let: sec(γ)=u−u21​+u2=0
−u21​+u2=0:u=1,u=−1,u=i,u=−i
−u21​+u2=0
Multiply both sides by u2
−u21​+u2=0
Multiply both sides by u2−u21​u2+u2u2=0⋅u2
Simplify
−u21​u2+u2u2=0⋅u2
Simplify −u21​u2:−1
−u21​u2
Multiply fractions: a⋅cb​=ca⋅b​=−u21⋅u2​
Cancel the common factor: u2=−1
Simplify u2u2:u4
u2u2
Apply exponent rule: ab⋅ac=ab+cu2u2=u2+2=u2+2
Add the numbers: 2+2=4=u4
Simplify 0⋅u2:0
0⋅u2
Apply rule 0⋅a=0=0
−1+u4=0
−1+u4=0
−1+u4=0
Solve −1+u4=0:u=1,u=−1,u=i,u=−i
−1+u4=0
Move 1to the right side
−1+u4=0
Add 1 to both sides−1+u4+1=0+1
Simplifyu4=1
u4=1
Rewrite the equation with v=u2 and v2=u4v2=1
Solve v2=1:v=1​,v=−1​
v2=1
For (g(x))2=f(a) the solutions are g(x)=f(a)​,−f(a)​
v=1​,v=−1​
v=1​,v=−1​
Substitute back v=u2,solve for u
Solve u2=1​:u=1,u=−1
u2=1​
Apply rule 1​=1u2=1
For x2=f(a) the solutions are x=f(a)​,−f(a)​
u=1​,u=−1​
1​=1
1​
Apply rule 1​=1=1
−1​=−1
−1​
Apply rule 1​=1=−1
u=1,u=−1
Solve u2=−1​:u=i,u=−i
u2=−1​
Apply rule 1​=1u2=−1
For x2=f(a) the solutions are x=f(a)​,−f(a)​
u=−1​,u=−−1​
Simplify −1​:i
−1​
Apply imaginary number rule: −1​=i=i
Simplify −−1​:−i
−−1​
Apply imaginary number rule: −1​=i=−i
u=i,u=−i
The solutions are
u=1,u=−1,u=i,u=−i
u=1,u=−1,u=i,u=−i
Verify Solutions
Find undefined (singularity) points:u=0
Take the denominator(s) of −u21​+u2 and compare to zero
Solve u2=0:u=0
u2=0
Apply rule xn=0⇒x=0
u=0
The following points are undefinedu=0
Combine undefined points with solutions:
u=1,u=−1,u=i,u=−i
Substitute back u=sec(γ)sec(γ)=1,sec(γ)=−1,sec(γ)=i,sec(γ)=−i
sec(γ)=1,sec(γ)=−1,sec(γ)=i,sec(γ)=−i
sec(γ)=1:γ=2πn
sec(γ)=1
General solutions for sec(γ)=1
sec(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sec(x)1323​​2​2Undefined−2−2​−323​​​xπ67π​45π​34π​23π​35π​47π​611π​​sec(x)−1−323​​−2​−2Undefined22​323​​​​
γ=0+2πn
γ=0+2πn
Solve γ=0+2πn:γ=2πn
γ=0+2πn
0+2πn=2πnγ=2πn
γ=2πn
sec(γ)=−1:γ=π+2πn
sec(γ)=−1
General solutions for sec(γ)=−1
sec(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sec(x)1323​​2​2Undefined−2−2​−323​​​xπ67π​45π​34π​23π​35π​47π​611π​​sec(x)−1−323​​−2​−2Undefined22​323​​​​
γ=π+2πn
γ=π+2πn
sec(γ)=i:No Solution
sec(γ)=i
NoSolution
sec(γ)=−i:No Solution
sec(γ)=−i
NoSolution
Combine all the solutionsγ=2πn,γ=π+2πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

sin^2(x)+8sin(x)-9=0-2sin^2(θ)+10sin(θ)-3=3sin(θ),0<= θ<360cot^2(θ)+4csc(θ)=-510sin(a)+7sin(a)+1sin(a)+8sin(a)=482cos^2(θ)+7sin(θ)=5

Frequently Asked Questions (FAQ)

  • What is the general solution for tan^2(γ)+1=cos^2(γ) ?

    The general solution for tan^2(γ)+1=cos^2(γ) is γ=2pin,γ=pi+2pin
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024