Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

cos^4(x)= 1/16

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

cos4(x)=161​

Solution

x=3π​+2πn,x=35π​+2πn,x=32π​+2πn,x=34π​+2πn
+1
Degrees
x=60∘+360∘n,x=300∘+360∘n,x=120∘+360∘n,x=240∘+360∘n
Solution steps
cos4(x)=161​
Solve by substitution
cos4(x)=161​
Let: cos(x)=uu4=161​
u4=161​:u=21​,u=−21​,u=i21​,u=−i21​
u4=161​
Rewrite the equation with v=u2 and v2=u4v2=161​
Solve v2=161​:v=161​​,v=−161​​
v2=161​
For (g(x))2=f(a) the solutions are g(x)=f(a)​,−f(a)​
v=161​​,v=−161​​
v=161​​,v=−161​​
Substitute back v=u2,solve for u
Solve u2=161​​:u=21​,u=−21​
u2=161​​
Simplify 161​​:41​
161​​
Apply radical rule: assuming a≥0,b≥0=16​1​​
16​=4
16​
Factor the number: 16=42=42​
Apply radical rule: 42​=4=4
=41​​
Apply rule 1​=1=41​
For x2=f(a) the solutions are x=f(a)​,−f(a)​
u=41​​,u=−41​​
41​​=21​
41​​
Apply radical rule: assuming a≥0,b≥0=4​1​​
4​=2
4​
Factor the number: 4=22=22​
Apply radical rule: 22​=2=2
=21​​
Apply rule 1​=1=21​
−41​​=−21​
−41​​
Simplify 41​​:21​​
41​​
Apply radical rule: assuming a≥0,b≥0=4​1​​
4​=2
4​
Factor the number: 4=22=22​
Apply radical rule: 22​=2=2
=21​​
=−21​​
Apply rule 1​=1=−21​
u=21​,u=−21​
Solve u2=−161​​:u=i21​,u=−i21​
u2=−161​​
Simplify −161​​:−41​
−161​​
Simplify 161​​:41​​
161​​
Apply radical rule: assuming a≥0,b≥0=16​1​​
16​=4
16​
Factor the number: 16=42=42​
Apply radical rule: 42​=4=4
=41​​
=−41​​
Apply rule 1​=1=−41​
For x2=f(a) the solutions are x=f(a)​,−f(a)​
u=−41​​,u=−−41​​
Simplify −41​​:i21​
−41​​
Apply radical rule: −a​=−1​a​−41​​=−1​41​​=−1​41​​
Apply imaginary number rule: −1​=i=i41​​
Apply radical rule: assuming a≥0,b≥041​​=4​1​​=i4​1​​
4​=2
4​
Factor the number: 4=22=22​
Apply radical rule: 22​=2=2
=i21​​
Apply rule 1​=1=i21​
Rewrite i21​ in standard complex form: 21​i
i21​
Multiply fractions: a⋅cb​=ca⋅b​=21i​
Multiply: 1i=i=2i​
=21​i
Simplify −−41​​:−i21​
−−41​​
Simplify −41​​:i21​​
−41​​
Apply radical rule: −a​=−1​a​−41​​=−1​41​​=−1​41​​
Apply imaginary number rule: −1​=i=i41​​
Apply radical rule: assuming a≥0,b≥041​​=4​1​​=i4​1​​
4​=2
4​
Factor the number: 4=22=22​
Apply radical rule: 22​=2=2
=i21​​
=−i21​​
Apply rule 1​=1=−21​i
u=i21​,u=−i21​
The solutions are
u=21​,u=−21​,u=i21​,u=−i21​
Substitute back u=cos(x)cos(x)=21​,cos(x)=−21​,cos(x)=i21​,cos(x)=−i21​
cos(x)=21​,cos(x)=−21​,cos(x)=i21​,cos(x)=−i21​
cos(x)=21​:x=3π​+2πn,x=35π​+2πn
cos(x)=21​
General solutions for cos(x)=21​
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
x=3π​+2πn,x=35π​+2πn
x=3π​+2πn,x=35π​+2πn
cos(x)=−21​:x=32π​+2πn,x=34π​+2πn
cos(x)=−21​
General solutions for cos(x)=−21​
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
x=32π​+2πn,x=34π​+2πn
x=32π​+2πn,x=34π​+2πn
cos(x)=i21​:No Solution
cos(x)=i21​
NoSolution
cos(x)=−i21​:No Solution
cos(x)=−i21​
NoSolution
Combine all the solutionsx=3π​+2πn,x=35π​+2πn,x=32π​+2πn,x=34π​+2πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

solvefor w,P=4(Y/(Psin(w)))tan(2θ)=(500)/(350-75)sec(a)=-2tan^2(γ)+1=cos^2(γ)sin^2(x)+8sin(x)-9=0

Frequently Asked Questions (FAQ)

  • What is the general solution for cos^4(x)= 1/16 ?

    The general solution for cos^4(x)= 1/16 is x= pi/3+2pin,x=(5pi)/3+2pin,x=(2pi)/3+2pin,x=(4pi)/3+2pin
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024