Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

(tan((3a)/2))tan(a/2)=3

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

(tan(23a​))tan(2a​)=3

Solution

a=2⋅0.46796…+2πn,a=−2⋅0.46796…+2πn,a=2⋅1.28688…+2πn,a=−2⋅1.28688…+2πn
+1
Degrees
a=53.62480…∘+360∘n,a=−53.62480…∘+360∘n,a=147.46577…∘+360∘n,a=−147.46577…∘+360∘n
Solution steps
(tan(23a​))tan(2a​)=3
Subtract 3 from both sidestan(23a​)tan(2a​)−3=0
Let: u=2a​tan(3u)tan(u)−3=0
Rewrite using trig identities
−3+tan(3u)tan(u)
tan(3u)=1−3tan2(u)3tan(u)−tan3(u)​
tan(3u)
Rewrite using trig identities
tan(3u)
Rewrite as=tan(2u+u)
Use the Angle Sum identity: tan(s+t)=1−tan(s)tan(t)tan(s)+tan(t)​=1−tan(2u)tan(u)tan(2u)+tan(u)​
=1−tan(2u)tan(u)tan(2u)+tan(u)​
Use the Double Angle identity: tan(2u)=1−tan2(u)2tan(u)​=1−1−tan2(u)2tan(u)​tan(u)1−tan2(u)2tan(u)​+tan(u)​
Simplify 1−1−tan2(u)2tan(u)​tan(u)1−tan2(u)2tan(u)​+tan(u)​:1−3tan2(u)3tan(u)−tan3(u)​
1−1−tan2(u)2tan(u)​tan(u)1−tan2(u)2tan(u)​+tan(u)​
1−tan2(u)2tan(u)​tan(u)=1−tan2(u)2tan2(u)​
1−tan2(u)2tan(u)​tan(u)
Multiply fractions: a⋅cb​=ca⋅b​=1−tan2(u)2tan(u)tan(u)​
2tan(u)tan(u)=2tan2(u)
2tan(u)tan(u)
Apply exponent rule: ab⋅ac=ab+ctan(u)tan(u)=tan1+1(u)=2tan1+1(u)
Add the numbers: 1+1=2=2tan2(u)
=1−tan2(u)2tan2(u)​
=1−−tan2(u)+12tan2(u)​−tan2(u)+12tan(u)​+tan(u)​
Join 1−tan2(u)2tan(u)​+tan(u):1−tan2(u)3tan(u)−tan3(u)​
1−tan2(u)2tan(u)​+tan(u)
Convert element to fraction: tan(u)=1−tan2(u)tan(u)(1−tan2(u))​=1−tan2(u)2tan(u)​+1−tan2(u)tan(u)(1−tan2(u))​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=1−tan2(u)2tan(u)+tan(u)(1−tan2(u))​
Expand 2tan(u)+tan(u)(1−tan2(u)):3tan(u)−tan3(u)
2tan(u)+tan(u)(1−tan2(u))
Expand tan(u)(1−tan2(u)):tan(u)−tan3(u)
tan(u)(1−tan2(u))
Apply the distributive law: a(b−c)=ab−aca=tan(u),b=1,c=tan2(u)=tan(u)1−tan(u)tan2(u)
=1tan(u)−tan2(u)tan(u)
Simplify 1⋅tan(u)−tan2(u)tan(u):tan(u)−tan3(u)
1tan(u)−tan2(u)tan(u)
1⋅tan(u)=tan(u)
1tan(u)
Multiply: 1⋅tan(u)=tan(u)=tan(u)
tan2(u)tan(u)=tan3(u)
tan2(u)tan(u)
Apply exponent rule: ab⋅ac=ab+ctan2(u)tan(u)=tan2+1(u)=tan2+1(u)
Add the numbers: 2+1=3=tan3(u)
=tan(u)−tan3(u)
=tan(u)−tan3(u)
=2tan(u)+tan(u)−tan3(u)
Add similar elements: 2tan(u)+tan(u)=3tan(u)=3tan(u)−tan3(u)
=1−tan2(u)3tan(u)−tan3(u)​
=1−−tan2(u)+12tan2(u)​1−tan2(u)3tan(u)−tan3(u)​​
Apply the fraction rule: acb​​=c⋅ab​=(1−tan2(u))(1−1−tan2(u)2tan2(u)​)3tan(u)−tan3(u)​
Join 1−1−tan2(u)2tan2(u)​:1−tan2(u)1−3tan2(u)​
1−1−tan2(u)2tan2(u)​
Convert element to fraction: 1=1−tan2(u)1(1−tan2(u))​=1−tan2(u)1(1−tan2(u))​−1−tan2(u)2tan2(u)​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=1−tan2(u)1(1−tan2(u))−2tan2(u)​
1⋅(1−tan2(u))−2tan2(u)=1−3tan2(u)
1(1−tan2(u))−2tan2(u)
1⋅(1−tan2(u))=1−tan2(u)
1(1−tan2(u))
Multiply: 1⋅(1−tan2(u))=(1−tan2(u))=1−tan2(u)
Remove parentheses: (a)=a=1−tan2(u)
=1−tan2(u)−2tan2(u)
Add similar elements: −tan2(u)−2tan2(u)=−3tan2(u)=1−3tan2(u)
=1−tan2(u)1−3tan2(u)​
=−tan2(u)+1−3tan2(u)+1​(−tan2(u)+1)3tan(u)−tan3(u)​
Multiply (1−tan2(u))1−tan2(u)1−3tan2(u)​:1−3tan2(u)
(1−tan2(u))1−tan2(u)1−3tan2(u)​
Multiply fractions: a⋅cb​=ca⋅b​=1−tan2(u)(1−3tan2(u))(1−tan2(u))​
Cancel the common factor: 1−tan2(u)=1−3tan2(u)
=1−3tan2(u)3tan(u)−tan3(u)​
=1−3tan2(u)3tan(u)−tan3(u)​
=−3+1−3tan2(u)3tan(u)−tan3(u)​tan(u)
Multiply fractions: a⋅cb​=ca⋅b​=−3+1−3tan2(u)tan(u)(3tan(u)−tan3(u))​
−3+1−3tan2(u)(−tan3(u)+3tan(u))tan(u)​=0
Solve by substitution
−3+1−3tan2(u)(−tan3(u)+3tan(u))tan(u)​=0
Let: tan(u)=u−3+1−3u2(−u3+3u)u​=0
−3+1−3u2(−u3+3u)u​=0:u=6−33​​,u=−6−33​​,u=6+33​​,u=−6+33​​
−3+1−3u2(−u3+3u)u​=0
Multiply both sides by 1−3u2
−3+1−3u2(−u3+3u)u​=0
Multiply both sides by 1−3u2−3(1−3u2)+1−3u2(−u3+3u)u​(1−3u2)=0⋅(1−3u2)
Simplify
−3(1−3u2)+1−3u2(−u3+3u)u​(1−3u2)=0⋅(1−3u2)
Simplify 1−3u2(−u3+3u)u​(1−3u2):u(−u3+3u)
1−3u2(−u3+3u)u​(1−3u2)
Multiply fractions: a⋅cb​=ca⋅b​=1−3u2(−u3+3u)u(1−3u2)​
Cancel the common factor: 1−3u2=(−u3+3u)u
Simplify 0⋅(1−3u2):0
0⋅(1−3u2)
Apply rule 0⋅a=0=0
−3(1−3u2)+u(−u3+3u)=0
−3(1−3u2)+u(−u3+3u)=0
−3(1−3u2)+u(−u3+3u)=0
Solve −3(1−3u2)+u(−u3+3u)=0:u=6−33​​,u=−6−33​​,u=6+33​​,u=−6+33​​
−3(1−3u2)+u(−u3+3u)=0
Expand −3(1−3u2)+u(−u3+3u):−u4+12u2−3
−3(1−3u2)+u(−u3+3u)
Expand −3(1−3u2):−3+9u2
−3(1−3u2)
Apply the distributive law: a(b−c)=ab−aca=−3,b=1,c=3u2=−3⋅1−(−3)⋅3u2
Apply minus-plus rules−(−a)=a=−3⋅1+3⋅3u2
Simplify −3⋅1+3⋅3u2:−3+9u2
−3⋅1+3⋅3u2
Multiply the numbers: 3⋅1=3=−3+3⋅3u2
Multiply the numbers: 3⋅3=9=−3+9u2
=−3+9u2
=−3+9u2+u(−u3+3u)
Expand u(−u3+3u):−u4+3u2
u(−u3+3u)
Apply the distributive law: a(b+c)=ab+aca=u,b=−u3,c=3u=u(−u3)+u⋅3u
Apply minus-plus rules+(−a)=−a=−u3u+3uu
Simplify −u3u+3uu:−u4+3u2
−u3u+3uu
u3u=u4
u3u
Apply exponent rule: ab⋅ac=ab+cu3u=u3+1=u3+1
Add the numbers: 3+1=4=u4
3uu=3u2
3uu
Apply exponent rule: ab⋅ac=ab+cuu=u1+1=3u1+1
Add the numbers: 1+1=2=3u2
=−u4+3u2
=−u4+3u2
=−3+9u2−u4+3u2
Simplify −3+9u2−u4+3u2:−u4+12u2−3
−3+9u2−u4+3u2
Group like terms=−u4+9u2+3u2−3
Add similar elements: 9u2+3u2=12u2=−u4+12u2−3
=−u4+12u2−3
−u4+12u2−3=0
Rewrite the equation with v=u2 and v2=u4−v2+12v−3=0
Solve −v2+12v−3=0:v=6−33​,v=6+33​
−v2+12v−3=0
Solve with the quadratic formula
−v2+12v−3=0
Quadratic Equation Formula:
For a=−1,b=12,c=−3v1,2​=2(−1)−12±122−4(−1)(−3)​​
v1,2​=2(−1)−12±122−4(−1)(−3)​​
122−4(−1)(−3)​=233​
122−4(−1)(−3)​
Apply rule −(−a)=a=122−4⋅1⋅3​
Multiply the numbers: 4⋅1⋅3=12=122−12​
122=144=144−12​
Subtract the numbers: 144−12=132=132​
Prime factorization of 132:22⋅3⋅11
132
132divides by 2132=66⋅2=2⋅66
66divides by 266=33⋅2=2⋅2⋅33
33divides by 333=11⋅3=2⋅2⋅3⋅11
2,3,11 are all prime numbers, therefore no further factorization is possible=2⋅2⋅3⋅11
=22⋅3⋅11
=22⋅3⋅11​
Apply radical rule: =22​3⋅11​
Apply radical rule: 22​=2=23⋅11​
Refine=233​
v1,2​=2(−1)−12±233​​
Separate the solutionsv1​=2(−1)−12+233​​,v2​=2(−1)−12−233​​
v=2(−1)−12+233​​:6−33​
2(−1)−12+233​​
Remove parentheses: (−a)=−a=−2⋅1−12+233​​
Multiply the numbers: 2⋅1=2=−2−12+233​​
Apply the fraction rule: −b−a​=ba​−12+233​=−(12−233​)=212−233​​
Factor 12−233​:2(6−33​)
12−233​
Rewrite as=2⋅6−233​
Factor out common term 2=2(6−33​)
=22(6−33​)​
Divide the numbers: 22​=1=6−33​
v=2(−1)−12−233​​:6+33​
2(−1)−12−233​​
Remove parentheses: (−a)=−a=−2⋅1−12−233​​
Multiply the numbers: 2⋅1=2=−2−12−233​​
Apply the fraction rule: −b−a​=ba​−12−233​=−(12+233​)=212+233​​
Factor 12+233​:2(6+33​)
12+233​
Rewrite as=2⋅6+233​
Factor out common term 2=2(6+33​)
=22(6+33​)​
Divide the numbers: 22​=1=6+33​
The solutions to the quadratic equation are:v=6−33​,v=6+33​
v=6−33​,v=6+33​
Substitute back v=u2,solve for u
Solve u2=6−33​:u=6−33​​,u=−6−33​​
u2=6−33​
For x2=f(a) the solutions are x=f(a)​,−f(a)​
u=6−33​​,u=−6−33​​
Solve u2=6+33​:u=6+33​​,u=−6+33​​
u2=6+33​
For x2=f(a) the solutions are x=f(a)​,−f(a)​
u=6+33​​,u=−6+33​​
The solutions are
u=6−33​​,u=−6−33​​,u=6+33​​,u=−6+33​​
u=6−33​​,u=−6−33​​,u=6+33​​,u=−6+33​​
Verify Solutions
Find undefined (singularity) points:u=3​1​,u=−3​1​
Take the denominator(s) of −3+1−3u2(−u3+3u)u​ and compare to zero
Solve 1−3u2=0:u=3​1​,u=−3​1​
1−3u2=0
Move 1to the right side
1−3u2=0
Subtract 1 from both sides1−3u2−1=0−1
Simplify−3u2=−1
−3u2=−1
Divide both sides by −3
−3u2=−1
Divide both sides by −3−3−3u2​=−3−1​
Simplifyu2=31​
u2=31​
For x2=f(a) the solutions are x=f(a)​,−f(a)​
u=31​​,u=−31​​
31​​=3​1​
31​​
Apply radical rule: ba​​=b​a​​,a≥0,b≥0=3​1​​
Apply radical rule: 1​=11​=1=3​1​
−31​​=−3​1​
−31​​
Apply radical rule: ba​​=b​a​​,a≥0,b≥0=−3​1​​
Apply radical rule: 1​=11​=1=−3​1​
u=3​1​,u=−3​1​
The following points are undefinedu=3​1​,u=−3​1​
Combine undefined points with solutions:
u=6−33​​,u=−6−33​​,u=6+33​​,u=−6+33​​
Substitute back u=tan(u)tan(u)=6−33​​,tan(u)=−6−33​​,tan(u)=6+33​​,tan(u)=−6+33​​
tan(u)=6−33​​,tan(u)=−6−33​​,tan(u)=6+33​​,tan(u)=−6+33​​
tan(u)=6−33​​:u=arctan(6−33​​)+πn
tan(u)=6−33​​
Apply trig inverse properties
tan(u)=6−33​​
General solutions for tan(u)=6−33​​tan(x)=a⇒x=arctan(a)+πnu=arctan(6−33​​)+πn
u=arctan(6−33​​)+πn
tan(u)=−6−33​​:u=arctan(−6−33​​)+πn
tan(u)=−6−33​​
Apply trig inverse properties
tan(u)=−6−33​​
General solutions for tan(u)=−6−33​​tan(x)=−a⇒x=arctan(−a)+πnu=arctan(−6−33​​)+πn
u=arctan(−6−33​​)+πn
tan(u)=6+33​​:u=arctan(6+33​​)+πn
tan(u)=6+33​​
Apply trig inverse properties
tan(u)=6+33​​
General solutions for tan(u)=6+33​​tan(x)=a⇒x=arctan(a)+πnu=arctan(6+33​​)+πn
u=arctan(6+33​​)+πn
tan(u)=−6+33​​:u=arctan(−6+33​​)+πn
tan(u)=−6+33​​
Apply trig inverse properties
tan(u)=−6+33​​
General solutions for tan(u)=−6+33​​tan(x)=−a⇒x=arctan(−a)+πnu=arctan(−6+33​​)+πn
u=arctan(−6+33​​)+πn
Combine all the solutionsu=arctan(6−33​​)+πn,u=arctan(−6−33​​)+πn,u=arctan(6+33​​)+πn,u=arctan(−6+33​​)+πn
Substitute back u=2a​
2a​=arctan(6−33​​)+πn:a=2arctan(6−33​​)+2πn
2a​=arctan(6−33​​)+πn
Multiply both sides by 2
2a​=arctan(6−33​​)+πn
Multiply both sides by 222a​=2arctan(6−33​​)+2πn
Simplifya=2arctan(6−33​​)+2πn
a=2arctan(6−33​​)+2πn
2a​=arctan(−6−33​​)+πn:a=−2arctan(6−33​​)+2πn
2a​=arctan(−6−33​​)+πn
Simplify arctan(−6−33​​)+πn:−arctan(6−33​​)+πn
arctan(−6−33​​)+πn
Use the following property: arctan(−x)=−arctan(x)arctan(−6−33​​)=−arctan(6−33​​)=−arctan(6−33​​)+πn
2a​=−arctan(6−33​​)+πn
Multiply both sides by 2
2a​=−arctan(6−33​​)+πn
Multiply both sides by 222a​=−2arctan(6−33​​)+2πn
Simplifya=−2arctan(6−33​​)+2πn
a=−2arctan(6−33​​)+2πn
2a​=arctan(6+33​​)+πn:a=2arctan(6+33​​)+2πn
2a​=arctan(6+33​​)+πn
Multiply both sides by 2
2a​=arctan(6+33​​)+πn
Multiply both sides by 222a​=2arctan(6+33​​)+2πn
Simplifya=2arctan(6+33​​)+2πn
a=2arctan(6+33​​)+2πn
2a​=arctan(−6+33​​)+πn:a=−2arctan(6+33​​)+2πn
2a​=arctan(−6+33​​)+πn
Simplify arctan(−6+33​​)+πn:−arctan(6+33​​)+πn
arctan(−6+33​​)+πn
Use the following property: arctan(−x)=−arctan(x)arctan(−6+33​​)=−arctan(6+33​​)=−arctan(6+33​​)+πn
2a​=−arctan(6+33​​)+πn
Multiply both sides by 2
2a​=−arctan(6+33​​)+πn
Multiply both sides by 222a​=−2arctan(6+33​​)+2πn
Simplifya=−2arctan(6+33​​)+2πn
a=−2arctan(6+33​​)+2πn
a=2arctan(6−33​​)+2πn,a=−2arctan(6−33​​)+2πn,a=2arctan(6+33​​)+2πn,a=−2arctan(6+33​​)+2πn
Show solutions in decimal forma=2⋅0.46796…+2πn,a=−2⋅0.46796…+2πn,a=2⋅1.28688…+2πn,a=−2⋅1.28688…+2πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

1=sqrt(3)sin(x)(sin(115))/(20)=(sin(B))/(15)3tan(θ)+1=2tan(θ)cos(x)= 18/25sin(x)=-(sqrt(2))/2 ,-pi<= x<= pi
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024