Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

sqrt(cos(θ))=2cos(θ)-1

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

cos(θ)​=2cos(θ)−1

Solution

θ=2πn
+1
Degrees
θ=0∘+360∘n
Solution steps
cos(θ)​=2cos(θ)−1
Solve by substitution
cos(θ)​=2cos(θ)−1
Let: cos(θ)=uu​=2u−1
u​=2u−1:u=1
u​=2u−1
Square both sides:u=4u2−4u+1
u​=2u−1
(u​)2=(2u−1)2
Expand (u​)2:u
(u​)2
Apply radical rule: a​=a21​=(u21​)2
Apply exponent rule: (ab)c=abc=u21​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=u
Expand (2u−1)2:4u2−4u+1
(2u−1)2
Apply Perfect Square Formula: (a−b)2=a2−2ab+b2a=2u,b=1
=(2u)2−2⋅2u⋅1+12
Simplify (2u)2−2⋅2u⋅1+12:4u2−4u+1
(2u)2−2⋅2u⋅1+12
Apply rule 1a=112=1=(2u)2−2⋅2⋅1⋅u+1
(2u)2=4u2
(2u)2
Apply exponent rule: (a⋅b)n=anbn=22u2
22=4=4u2
2⋅2u⋅1=4u
2⋅2u⋅1
Multiply the numbers: 2⋅2⋅1=4=4u
=4u2−4u+1
=4u2−4u+1
u=4u2−4u+1
u=4u2−4u+1
Solve u=4u2−4u+1:u=1,u=41​
u=4u2−4u+1
Switch sides4u2−4u+1=u
Move uto the left side
4u2−4u+1=u
Subtract u from both sides4u2−4u+1−u=u−u
Simplify4u2−5u+1=0
4u2−5u+1=0
Solve with the quadratic formula
4u2−5u+1=0
Quadratic Equation Formula:
For a=4,b=−5,c=1u1,2​=2⋅4−(−5)±(−5)2−4⋅4⋅1​​
u1,2​=2⋅4−(−5)±(−5)2−4⋅4⋅1​​
(−5)2−4⋅4⋅1​=3
(−5)2−4⋅4⋅1​
Apply exponent rule: (−a)n=an,if n is even(−5)2=52=52−4⋅4⋅1​
Multiply the numbers: 4⋅4⋅1=16=52−16​
52=25=25−16​
Subtract the numbers: 25−16=9=9​
Factor the number: 9=32=32​
Apply radical rule: 32​=3=3
u1,2​=2⋅4−(−5)±3​
Separate the solutionsu1​=2⋅4−(−5)+3​,u2​=2⋅4−(−5)−3​
u=2⋅4−(−5)+3​:1
2⋅4−(−5)+3​
Apply rule −(−a)=a=2⋅45+3​
Add the numbers: 5+3=8=2⋅48​
Multiply the numbers: 2⋅4=8=88​
Apply rule aa​=1=1
u=2⋅4−(−5)−3​:41​
2⋅4−(−5)−3​
Apply rule −(−a)=a=2⋅45−3​
Subtract the numbers: 5−3=2=2⋅42​
Multiply the numbers: 2⋅4=8=82​
Cancel the common factor: 2=41​
The solutions to the quadratic equation are:u=1,u=41​
u=1,u=41​
Verify Solutions:u=1True,u=41​False
Check the solutions by plugging them into u​=2u−1
Remove the ones that don't agree with the equation.
Plug in u=1:True
1​=2⋅1−1
1​=1
1​
Apply rule 1​=1=1
2⋅1−1=1
2⋅1−1
Multiply the numbers: 2⋅1=2=2−1
Subtract the numbers: 2−1=1=1
1=1
True
Plug in u=41​:False
41​​=2(41​)−1
41​​=21​
41​​
Apply radical rule: assuming a≥0,b≥0=4​1​​
4​=2
4​
Factor the number: 4=22=22​
Apply radical rule: 22​=2=2
=21​​
Apply rule 1​=1=21​
2(41​)−1=−21​
2(41​)−1
Remove parentheses: (a)=a=2⋅41​−1
2⋅41​=21​
2⋅41​
Multiply fractions: a⋅cb​=ca⋅b​=41⋅2​
Multiply the numbers: 1⋅2=2=42​
Cancel the common factor: 2=21​
=21​−1
Convert element to fraction: 1=21⋅2​=−21⋅2​+21​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=2−1⋅2+1​
−1⋅2+1=−1
−1⋅2+1
Multiply the numbers: 1⋅2=2=−2+1
Add/Subtract the numbers: −2+1=−1=−1
=2−1​
Apply the fraction rule: b−a​=−ba​=−21​
21​=−21​
False
The solution isu=1
Substitute back u=cos(θ)cos(θ)=1
cos(θ)=1
cos(θ)=1:θ=2πn
cos(θ)=1
General solutions for cos(θ)=1
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
θ=0+2πn
θ=0+2πn
Solve θ=0+2πn:θ=2πn
θ=0+2πn
0+2πn=2πnθ=2πn
θ=2πn
Combine all the solutionsθ=2πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

2cos^2(2β)+cos(2β)-1=0,-360<= β<= 360cos(2x)= 3/70=1-3cos(θ)(tan((3a)/2))tan(a/2)=31=sqrt(3)sin(x)

Frequently Asked Questions (FAQ)

  • What is the general solution for sqrt(cos(θ))=2cos(θ)-1 ?

    The general solution for sqrt(cos(θ))=2cos(θ)-1 is θ=2pin
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024