解答
0.16085=sin(3652π(x−114))
解答
x=2π365⋅0.16155…+365n+114,x=365n+2593−2π365⋅0.16155…
+1
度数
x=7069.42804…∘+20912.95952…∘n,x=16450.48944…∘+20912.95952…∘n求解步骤
0.16085=sin(3652π(x−114))
交换两边sin(3652π(x−114))=0.16085
使用反三角函数性质
sin(3652π(x−114))=0.16085
sin(3652π(x−114))=0.16085的通解sin(x)=a⇒x=arcsin(a)+2πn,x=π−arcsin(a)+2πn3652π(x−114)=arcsin(0.16085)+2πn,3652π(x−114)=π−arcsin(0.16085)+2πn
3652π(x−114)=arcsin(0.16085)+2πn,3652π(x−114)=π−arcsin(0.16085)+2πn
解 3652π(x−114)=arcsin(0.16085)+2πn:x=2π365arcsin(0.16085)+365n+114
3652π(x−114)=arcsin(0.16085)+2πn
在两边乘以 365
3652π(x−114)=arcsin(0.16085)+2πn
在两边乘以 365365⋅3652π(x−114)=365arcsin(0.16085)+365⋅2πn
化简2π(x−114)=365arcsin(0.16085)+730πn
2π(x−114)=365arcsin(0.16085)+730πn
两边除以 2π
2π(x−114)=365arcsin(0.16085)+730πn
两边除以 2π2π2π(x−114)=2π365arcsin(0.16085)+2π730πn
化简
2π2π(x−114)=2π365arcsin(0.16085)+2π730πn
化简 2π2π(x−114):x−114
2π2π(x−114)
数字相除:22=1=ππ(x−114)
约分:π=x−114
化简 2π365arcsin(0.16085)+2π730πn:2π365arcsin(0.16085)+365n
2π365arcsin(0.16085)+2π730πn
消掉 2π730πn:365n
2π730πn
消掉 2π730πn:365n
2π730πn
数字相除:2730=365=π365πn
约分:π=365n
=365n
=2π365arcsin(0.16085)+365n
x−114=2π365arcsin(0.16085)+365n
x−114=2π365arcsin(0.16085)+365n
x−114=2π365arcsin(0.16085)+365n
将 114到右边
x−114=2π365arcsin(0.16085)+365n
两边加上 114x−114+114=2π365arcsin(0.16085)+365n+114
化简x=2π365arcsin(0.16085)+365n+114
x=2π365arcsin(0.16085)+365n+114
解 3652π(x−114)=π−arcsin(0.16085)+2πn:x=365n+2593−2π365arcsin(0.16085)
3652π(x−114)=π−arcsin(0.16085)+2πn
在两边乘以 365
3652π(x−114)=π−arcsin(0.16085)+2πn
在两边乘以 365365⋅3652π(x−114)=365π−365arcsin(0.16085)+365⋅2πn
化简2π(x−114)=365π−365arcsin(0.16085)+730πn
2π(x−114)=365π−365arcsin(0.16085)+730πn
两边除以 2π
2π(x−114)=365π−365arcsin(0.16085)+730πn
两边除以 2π2π2π(x−114)=2π365π−2π365arcsin(0.16085)+2π730πn
化简
2π2π(x−114)=2π365π−2π365arcsin(0.16085)+2π730πn
化简 2π2π(x−114):x−114
2π2π(x−114)
数字相除:22=1=ππ(x−114)
约分:π=x−114
化简 2π365π−2π365arcsin(0.16085)+2π730πn:2365−2π365arcsin(0.16085)+365n
2π365π−2π365arcsin(0.16085)+2π730πn
消掉 2π365π:2365
2π365π
约分:π=2365
=2365−2π365arcsin(0.16085)+2π730πn
消掉 2π730πn:365n
2π730πn
消掉 2π730πn:365n
2π730πn
数字相除:2730=365=π365πn
约分:π=365n
=365n
=2365−2π365arcsin(0.16085)+365n
x−114=2365−2π365arcsin(0.16085)+365n
x−114=2365−2π365arcsin(0.16085)+365n
x−114=2365−2π365arcsin(0.16085)+365n
将 114到右边
x−114=2365−2π365arcsin(0.16085)+365n
两边加上 114x−114+114=2365−2π365arcsin(0.16085)+365n+114
化简
x−114+114=2365−2π365arcsin(0.16085)+365n+114
化简 x−114+114:x
x−114+114
同类项相加:−114+114=0
=x
化简 2365−2π365arcsin(0.16085)+365n+114:365n+2593−2π365arcsin(0.16085)
2365−2π365arcsin(0.16085)+365n+114
合并分式 114+2365:2593
114+2365
将项转换为分式: 114=2114⋅2=2114⋅2+2365
因为分母相等,所以合并分式: ca±cb=ca±b=2114⋅2+365
114⋅2+365=593
114⋅2+365
数字相乘:114⋅2=228=228+365
数字相加:228+365=593=593
=2593
=365n+2593−2π365arcsin(0.16085)
x=365n+2593−2π365arcsin(0.16085)
x=365n+2593−2π365arcsin(0.16085)
x=365n+2593−2π365arcsin(0.16085)
x=2π365arcsin(0.16085)+365n+114,x=365n+2593−2π365arcsin(0.16085)
以小数形式表示解x=2π365⋅0.16155…+365n+114,x=365n+2593−2π365⋅0.16155…