Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

tan(θ)cos(27)=cos(63)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

tan(θ)cos(27∘)=cos(63∘)

Solution

θ=0.47123…+180∘n
+1
Radians
θ=0.47123…+πn
Solution steps
tan(θ)cos(27∘)=cos(63∘)
cos(27∘)=42​4+2​5−5​​​​
cos(27∘)
Rewrite using trig identities:21+cos(54∘)​​
cos(27∘)
Write cos(27∘)as cos(254∘​)=cos(254∘​)
Use the Half Angle identity:cos(2θ​)=21+cos(θ)​​
Use the Double Angle identitycos(2θ)=2cos2(θ)−1
Substitute θ with 2θ​cos(θ)=2cos2(2θ​)−1
Switch sides2cos2(2θ​)=1+cos(θ)
Divide both sides by 2cos2(2θ​)=2(1+cos(θ))​
Square root both sides
Choose the root sign according to the quadrant of 2θ​:
range[0,90∘][90∘,180∘][180∘,270∘][270∘,360∘]​quadrantIIIIIIIV​sinpositivepositivenegativenegative​cospositivenegativenegativepositive​​
cos(2θ​)=2(1+cos(θ))​​
=21+cos(54∘)​​
=21+cos(54∘)​​
Rewrite using trig identities:cos(54∘)=42​5−5​​​
cos(54∘)
Rewrite using trig identities:sin(36∘)
cos(54∘)
Use the following identity: cos(x)=sin(90∘−x)=sin(90∘−54∘)
Simplify:90∘−54∘=36∘
90∘−54∘
Least Common Multiplier of 2,10:10
2,10
Least Common Multiplier (LCM)
Prime factorization of 2:2
2
2 is a prime number, therefore no factorization is possible=2
Prime factorization of 10:2⋅5
10
10divides by 210=5⋅2=2⋅5
2,5 are all prime numbers, therefore no further factorization is possible=2⋅5
Multiply each factor the greatest number of times it occurs in either 2 or 10=2⋅5
Multiply the numbers: 2⋅5=10=10
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 10
For 90∘:multiply the denominator and numerator by 590∘=2⋅5180∘5​=90∘
=90∘−54∘
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=10180∘5−540∘​
Add similar elements: 900∘−540∘=360∘=36∘
Cancel the common factor: 2=36∘
=sin(36∘)
=sin(36∘)
Rewrite using trig identities:42​5−5​​​
sin(36∘)
Show that: cos(36∘)−sin(18∘)=21​
Use the following product to sum identity: 2sin(x)cos(y)=sin(x+y)−sin(x−y)2cos(36∘)sin(18∘)=sin(54∘)−sin(18∘)
Show that: 2cos(36∘)sin(18∘)=21​
Use the Double Angle identity: sin(2x)=2sin(x)cos(x)sin(72∘)=2sin(36∘)cos(36∘)sin(72∘)sin(36∘)=4sin(36∘)sin(18∘)cos(36∘)cos(18∘)
Divide both sides by sin(36∘)sin(72∘)=4sin(18∘)cos(36∘)cos(18∘)
Use the following identity: sin(x)=cos(90∘−x)sin(72∘)=cos(90∘−72∘)cos(90∘−72∘)=4sin(18∘)cos(36∘)cos(18∘)
cos(18∘)=4sin(18∘)cos(36∘)cos(18∘)
Divide both sides by cos(18∘)1=4sin(18∘)cos(36∘)
Divide both sides by 221​=2sin(18∘)cos(36∘)
Substitute 21​=2sin(18∘)cos(36∘)21​=sin(54∘)−sin(18∘)
sin(54∘)=cos(90∘−54∘)21​=cos(90∘−54∘)−sin(18∘)
21​=cos(36∘)−sin(18∘)
Show that: cos(36∘)+sin(18∘)=45​​
Use the factorization rule: a2−b2=(a+b)(a−b)a=cos(36∘)+sin(18∘)(cos(36∘)+sin(18∘))2−(cos(36∘)−sin(18∘))2=((cos(36∘)+sin(18∘))+(cos(36∘)−sin(18∘)))((cos(36∘)+sin(18∘))−(cos(36∘)−sin(18∘)))
Refine(cos(36∘)+sin(18∘))2−(cos(36∘)−sin(18∘))2=2(2cos(36∘)sin(18∘))
Show that: 2cos(36∘)sin(18∘)=21​
Use the Double Angle identity: sin(2x)=2sin(x)cos(x)sin(72∘)=2sin(36∘)cos(36∘)sin(72∘)sin(36∘)=4sin(36∘)sin(18∘)cos(36∘)cos(18∘)
Divide both sides by sin(36∘)sin(72∘)=4sin(18∘)cos(36∘)cos(18∘)
Use the following identity: sin(x)=cos(90∘−x)sin(72∘)=cos(90∘−72∘)cos(90∘−72∘)=4sin(18∘)cos(36∘)cos(18∘)
cos(18∘)=4sin(18∘)cos(36∘)cos(18∘)
Divide both sides by cos(18∘)1=4sin(18∘)cos(36∘)
Divide both sides by 221​=2sin(18∘)cos(36∘)
Substitute 2cos(36∘)sin(18∘)=21​(cos(36∘)+sin(18∘))2−(cos(36∘)−sin(18∘))2=1
Substitute cos(36∘)−sin(18∘)=21​(cos(36∘)+sin(18∘))2−(21​)2=1
Refine(cos(36∘)+sin(18∘))2−41​=1
Add 41​ to both sides(cos(36∘)+sin(18∘))2−41​+41​=1+41​
Refine(cos(36∘)+sin(18∘))2=45​
Take the square root of both sidescos(36∘)+sin(18∘)=±45​​
cos(36∘)cannot be negativesin(18∘)cannot be negativecos(36∘)+sin(18∘)=45​​
Add the following equationscos(36∘)+sin(18∘)=25​​((cos(36∘)+sin(18∘))+(cos(36∘)−sin(18∘)))=(25​​+21​)
Refinecos(36∘)=45​+1​
Square both sides(cos(36∘))2=(45​+1​)2
Use the following identity: sin2(x)=1−cos2(x)sin2(36∘)=1−cos2(36∘)
Substitute cos(36∘)=45​+1​sin2(36∘)=1−(45​+1​)2
Refinesin2(36∘)=85−5​​
Take the square root of both sidessin(36∘)=±85−5​​​
sin(36∘)cannot be negativesin(36∘)=85−5​​​
Refinesin(36∘)=225−5​​​​
=225−5​​​​
225−5​​​​=42​5−5​​​
225−5​​​​
25−5​​​=2​5−5​​​
25−5​​​
Apply radical rule: assuming a≥0,b≥0=2​5−5​​​
=22​5−5​​​​
Apply the fraction rule: acb​​=c⋅ab​=2​⋅25−5​​​
Rationalize 22​5−5​​​:42​5−5​​​
22​5−5​​​
Multiply by the conjugate 2​2​​=2​⋅22​5−5​​2​​
2​⋅22​=4
2​⋅22​
Apply exponent rule: ab⋅ac=ab+c22​2​=2⋅221​⋅221​=21+21​+21​=21+21​+21​
Add similar elements: 21​+21​=2⋅21​=21+2⋅21​
2⋅21​=1
2⋅21​
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=21+1
Add the numbers: 1+1=2=22
22=4=4
=42​5−5​​​
=42​5−5​​​
=42​5−5​​​
=42​5−5​​​
=21+42​5−5​​​​​
Simplify 21+42​5−5​​​​​:42​4+2​5−5​​​​
21+42​5−5​​​​​
21+42​5−5​​​​=84+2​5−5​​​
21+42​5−5​​​​
Join 1+42​5−5​​​:44+2​5−5​​​
1+42​5−5​​​
Convert element to fraction: 1=41⋅4​=41⋅4​+42​5−5​​​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=41⋅4+2​5−5​​​
Multiply the numbers: 1⋅4=4=44+2​5−5​​​
=244+2​5−5​​​​
Apply the fraction rule: acb​​=c⋅ab​=4⋅24+2​5−5​​​
Multiply the numbers: 4⋅2=8=84+2​5−5​​​
=84+2​5−5​​​​
Apply radical rule: assuming a≥0,b≥0=8​4+2​5−5​​​​
8​=22​
8​
Prime factorization of 8:23
8
8divides by 28=4⋅2=2⋅4
4divides by 24=2⋅2=2⋅2⋅2
2 is a prime number, therefore no further factorization is possible=2⋅2⋅2
=23
=23​
Apply exponent rule: ab+c=ab⋅ac=22⋅2​
Apply radical rule: =2​22​
Apply radical rule: 22​=2=22​
=22​2​5−5​​+4​​
Rationalize 22​4+2​5−5​​​​:42​2​5−5​​+4​​
22​4+2​5−5​​​​
Multiply by the conjugate 2​2​​=22​2​4+2​5−5​​​2​​
22​2​=4
22​2​
Apply exponent rule: ab⋅ac=ab+c22​2​=2⋅221​⋅221​=21+21​+21​=21+21​+21​
Add similar elements: 21​+21​=2⋅21​=21+2⋅21​
2⋅21​=1
2⋅21​
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=21+1
Add the numbers: 1+1=2=22
22=4=4
=42​4+2​5−5​​​​
=42​2​5−5​​+4​​
=42​4+2​5−5​​​​
cos(63∘)=42​4−2​5−5​​​​
cos(63∘)
Rewrite using trig identities:21+cos(126∘)​​
cos(63∘)
Write cos(63∘)as cos(2126∘​)=cos(2126∘​)
Use the Half Angle identity:cos(2θ​)=21+cos(θ)​​
Use the Double Angle identitycos(2θ)=2cos2(θ)−1
Substitute θ with 2θ​cos(θ)=2cos2(2θ​)−1
Switch sides2cos2(2θ​)=1+cos(θ)
Divide both sides by 2cos2(2θ​)=2(1+cos(θ))​
Square root both sides
Choose the root sign according to the quadrant of 2θ​:
range[0,90∘][90∘,180∘][180∘,270∘][270∘,360∘]​quadrantIIIIIIIV​sinpositivepositivenegativenegative​cospositivenegativenegativepositive​​
cos(2θ​)=2(1+cos(θ))​​
=21+cos(126∘)​​
=21+cos(126∘)​​
Rewrite using trig identities:cos(126∘)=−42​5−5​​​
cos(126∘)
Rewrite using trig identities:−sin(36∘)
cos(126∘)
Use the following identity: cos(x)=sin(90∘−x)=sin(90∘−126∘)
Simplify:90∘−126∘=−36∘
90∘−126∘
Least Common Multiplier of 2,10:10
2,10
Least Common Multiplier (LCM)
Prime factorization of 2:2
2
2 is a prime number, therefore no factorization is possible=2
Prime factorization of 10:2⋅5
10
10divides by 210=5⋅2=2⋅5
2,5 are all prime numbers, therefore no further factorization is possible=2⋅5
Multiply each factor the greatest number of times it occurs in either 2 or 10=2⋅5
Multiply the numbers: 2⋅5=10=10
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 10
For 90∘:multiply the denominator and numerator by 590∘=2⋅5180∘5​=90∘
=90∘−126∘
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=10180∘5−1260∘​
Add similar elements: 900∘−1260∘=−360∘=10−360∘​
Apply the fraction rule: b−a​=−ba​=−36∘
Cancel the common factor: 2=−36∘
=sin(−36∘)
Use the following property: sin(−x)=−sin(x)sin(−36∘)=−sin(36∘)=−sin(36∘)
=−sin(36∘)
Rewrite using trig identities:sin(36∘)=42​5−5​​​
sin(36∘)
Show that: cos(36∘)−sin(18∘)=21​
Use the following product to sum identity: 2sin(x)cos(y)=sin(x+y)−sin(x−y)2cos(36∘)sin(18∘)=sin(54∘)−sin(18∘)
Show that: 2cos(36∘)sin(18∘)=21​
Use the Double Angle identity: sin(2x)=2sin(x)cos(x)sin(72∘)=2sin(36∘)cos(36∘)sin(72∘)sin(36∘)=4sin(36∘)sin(18∘)cos(36∘)cos(18∘)
Divide both sides by sin(36∘)sin(72∘)=4sin(18∘)cos(36∘)cos(18∘)
Use the following identity: sin(x)=cos(90∘−x)sin(72∘)=cos(90∘−72∘)cos(90∘−72∘)=4sin(18∘)cos(36∘)cos(18∘)
cos(18∘)=4sin(18∘)cos(36∘)cos(18∘)
Divide both sides by cos(18∘)1=4sin(18∘)cos(36∘)
Divide both sides by 221​=2sin(18∘)cos(36∘)
Substitute 21​=2sin(18∘)cos(36∘)21​=sin(54∘)−sin(18∘)
sin(54∘)=cos(90∘−54∘)21​=cos(90∘−54∘)−sin(18∘)
21​=cos(36∘)−sin(18∘)
Show that: cos(36∘)+sin(18∘)=45​​
Use the factorization rule: a2−b2=(a+b)(a−b)a=cos(36∘)+sin(18∘)(cos(36∘)+sin(18∘))2−(cos(36∘)−sin(18∘))2=((cos(36∘)+sin(18∘))+(cos(36∘)−sin(18∘)))((cos(36∘)+sin(18∘))−(cos(36∘)−sin(18∘)))
Refine(cos(36∘)+sin(18∘))2−(cos(36∘)−sin(18∘))2=2(2cos(36∘)sin(18∘))
Show that: 2cos(36∘)sin(18∘)=21​
Use the Double Angle identity: sin(2x)=2sin(x)cos(x)sin(72∘)=2sin(36∘)cos(36∘)sin(72∘)sin(36∘)=4sin(36∘)sin(18∘)cos(36∘)cos(18∘)
Divide both sides by sin(36∘)sin(72∘)=4sin(18∘)cos(36∘)cos(18∘)
Use the following identity: sin(x)=cos(90∘−x)sin(72∘)=cos(90∘−72∘)cos(90∘−72∘)=4sin(18∘)cos(36∘)cos(18∘)
cos(18∘)=4sin(18∘)cos(36∘)cos(18∘)
Divide both sides by cos(18∘)1=4sin(18∘)cos(36∘)
Divide both sides by 221​=2sin(18∘)cos(36∘)
Substitute 2cos(36∘)sin(18∘)=21​(cos(36∘)+sin(18∘))2−(cos(36∘)−sin(18∘))2=1
Substitute cos(36∘)−sin(18∘)=21​(cos(36∘)+sin(18∘))2−(21​)2=1
Refine(cos(36∘)+sin(18∘))2−41​=1
Add 41​ to both sides(cos(36∘)+sin(18∘))2−41​+41​=1+41​
Refine(cos(36∘)+sin(18∘))2=45​
Take the square root of both sidescos(36∘)+sin(18∘)=±45​​
cos(36∘)cannot be negativesin(18∘)cannot be negativecos(36∘)+sin(18∘)=45​​
Add the following equationscos(36∘)+sin(18∘)=25​​((cos(36∘)+sin(18∘))+(cos(36∘)−sin(18∘)))=(25​​+21​)
Refinecos(36∘)=45​+1​
Square both sides(cos(36∘))2=(45​+1​)2
Use the following identity: sin2(x)=1−cos2(x)sin2(36∘)=1−cos2(36∘)
Substitute cos(36∘)=45​+1​sin2(36∘)=1−(45​+1​)2
Refinesin2(36∘)=85−5​​
Take the square root of both sidessin(36∘)=±85−5​​​
sin(36∘)cannot be negativesin(36∘)=85−5​​​
Refinesin(36∘)=225−5​​​​
=225−5​​​​
225−5​​​​=42​5−5​​​
225−5​​​​
25−5​​​=2​5−5​​​
25−5​​​
Apply radical rule: assuming a≥0,b≥0=2​5−5​​​
=22​5−5​​​​
Apply the fraction rule: acb​​=c⋅ab​=2​⋅25−5​​​
Rationalize 22​5−5​​​:42​5−5​​​
22​5−5​​​
Multiply by the conjugate 2​2​​=2​⋅22​5−5​​2​​
2​⋅22​=4
2​⋅22​
Apply exponent rule: ab⋅ac=ab+c22​2​=2⋅221​⋅221​=21+21​+21​=21+21​+21​
Add similar elements: 21​+21​=2⋅21​=21+2⋅21​
2⋅21​=1
2⋅21​
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=21+1
Add the numbers: 1+1=2=22
22=4=4
=42​5−5​​​
=42​5−5​​​
=42​5−5​​​
=−42​5−5​​​
=21−42​5−5​​​​​
Simplify 21−42​5−5​​​​​:42​4−2​5−5​​​​
21−42​5−5​​​​​
21−42​5−5​​​​=84−2​5−5​​​
21−42​5−5​​​​
Join 1−42​5−5​​​:44−2​5−5​​​
1−42​5−5​​​
Convert element to fraction: 1=41⋅4​=41⋅4​−42​5−5​​​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=41⋅4−2​5−5​​​
Multiply the numbers: 1⋅4=4=44−2​5−5​​​
=244−2​5−5​​​​
Apply the fraction rule: acb​​=c⋅ab​=4⋅24−2​5−5​​​
Multiply the numbers: 4⋅2=8=84−2​5−5​​​
=84−2​5−5​​​​
Apply radical rule: assuming a≥0,b≥0=8​4−2​5−5​​​​
8​=22​
8​
Prime factorization of 8:23
8
8divides by 28=4⋅2=2⋅4
4divides by 24=2⋅2=2⋅2⋅2
2 is a prime number, therefore no further factorization is possible=2⋅2⋅2
=23
=23​
Apply exponent rule: ab+c=ab⋅ac=22⋅2​
Apply radical rule: =2​22​
Apply radical rule: 22​=2=22​
=22​−2​5−5​​+4​​
Rationalize 22​4−2​5−5​​​​:42​−2​5−5​​+4​​
22​4−2​5−5​​​​
Multiply by the conjugate 2​2​​=22​2​4−2​5−5​​​2​​
22​2​=4
22​2​
Apply exponent rule: ab⋅ac=ab+c22​2​=2⋅221​⋅221​=21+21​+21​=21+21​+21​
Add similar elements: 21​+21​=2⋅21​=21+2⋅21​
2⋅21​=1
2⋅21​
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=21+1
Add the numbers: 1+1=2=22
22=4=4
=42​4−2​5−5​​​​
=42​−2​5−5​​+4​​
=42​4−2​5−5​​​​
tan(θ)42​4+2​5−5​​​​=42​4−2​5−5​​​​
Multiply both sides by 4
tan(θ)42​4+2​5−5​​​​=42​4−2​5−5​​​​
Multiply both sides by 44tan(θ)42​4+2​5−5​​​​=442​4−2​5−5​​​​
Simplify2​4+2​5−5​​​tan(θ)=2​−2​5−5​​+4​
2​4+2​5−5​​​tan(θ)=2​−2​5−5​​+4​
Divide both sides by 2​4+2​5−5​​​
2​4+2​5−5​​​tan(θ)=2​−2​5−5​​+4​
Divide both sides by 2​4+2​5−5​​​2​4+2​5−5​​​2​4+2​5−5​​​tan(θ)​=2​4+2​5−5​​​2​−2​5−5​​+4​​
Simplify
2​4+2​5−5​​​2​4+2​5−5​​​tan(θ)​=2​4+2​5−5​​​2​−2​5−5​​+4​​
Simplify 2​4+2​5−5​​​2​4+2​5−5​​​tan(θ)​:tan(θ)
2​4+2​5−5​​​2​4+2​5−5​​​tan(θ)​
Cancel the common factor: 2​=4+2​5−5​​​2​5−5​​+4​tan(θ)​
Cancel the common factor: 4+2​5−5​​​=tan(θ)
Simplify 2​4+2​5−5​​​2​−2​5−5​​+4​​:10​5−5​​−32​5−5​​+11−45​​
2​4+2​5−5​​​2​−2​5−5​​+4​​
Cancel the common factor: 2​=4+2​5−5​​​−2​5−5​​+4​​
Combine same powers : y​x​​=yx​​=4+2​5−5​​−2​5−5​​+4​​
4+2​5−5​​−2​5−5​​+4​=10​5−5​​−32​5−5​​+11−45​
4+2​5−5​​−2​5−5​​+4​
Multiply by the conjugate 4−2​5−5​​4−2​5−5​​​=(4+2​5−5​​)(4−2​5−5​​)(−2​5−5​​+4)(4−2​5−5​​)​
(−2​5−5​​+4)(4−2​5−5​​)=−82​5−5​​+26−25​
(−2​5−5​​+4)(4−2​5−5​​)
Apply exponent rule: ab⋅ac=ab+c(−2​5−5​​+4)(4−2​5−5​​)=(−2​5−5​​+4)1+1=(−2​5−5​​+4)1+1
Add the numbers: 1+1=2=(−2​5−5​​+4)2
Apply Perfect Square Formula: (a+b)2=a2+2ab+b2a=−2​5−5​​,b=4
=(−2​5−5​​)2+2(−2​5−5​​)⋅4+42
Simplify (−2​5−5​​)2+2(−2​5−5​​)⋅4+42:−82​5−5​​+26−25​
(−2​5−5​​)2+2(−2​5−5​​)⋅4+42
Remove parentheses: (−a)=−a=(−2​5−5​​)2−22​5−5​​⋅4+42
(−2​5−5​​)2=2(5−5​)
(−2​5−5​​)2
Apply exponent rule: (−a)n=an,if n is even(−2​5−5​​)2=(2​5−5​​)2=(2​5−5​​)2
Apply exponent rule: (a⋅b)n=anbn=(2​)2(5−5​​)2
(2​)2:2
Apply radical rule: a​=a21​=(221​)2
Apply exponent rule: (ab)c=abc=221​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=2
=2(5−5​​)2
(5−5​​)2:5−5​
Apply radical rule: a​=a21​=((5−5​)21​)2
Apply exponent rule: (ab)c=abc=(5−5​)21​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=5−5​
=2(5−5​)
22​5−5​​⋅4=82​5−5​​
22​5−5​​⋅4
Multiply the numbers: 2⋅4=8=82​5−5​​
42=16
42
42=16=16
=2(5−5​)−82​5−5​​+16
Expand 2(5−5​):10−25​
2(5−5​)
Apply the distributive law: a(b−c)=ab−aca=2,b=5,c=5​=2⋅5−25​
Multiply the numbers: 2⋅5=10=10−25​
=10−25​−82​5−5​​+16
Add the numbers: 10+16=26=−82​5−5​​+26−25​
=−82​5−5​​+26−25​
(4+2​5−5​​)(4−2​5−5​​)=6+25​
(4+2​5−5​​)(4−2​5−5​​)
2​5−5​​=10−25​​
2​5−5​​
Apply radical rule: a​b​=a⋅b​2​5−5​​=2(5−5​)​=2(5−5​)​
Expand 2(5−5​):10−25​
2(5−5​)
Apply the distributive law: a(b−c)=ab−aca=2,b=5,c=5​=2⋅5−25​
Multiply the numbers: 2⋅5=10=10−25​
=10−25​​
=(10−25​​+4)(−2​5−5​​+4)
2​5−5​​=10−25​​
2​5−5​​
Apply radical rule: a​b​=a⋅b​2​5−5​​=2(5−5​)​=2(5−5​)​
Expand 2(5−5​):10−25​
2(5−5​)
Apply the distributive law: a(b−c)=ab−aca=2,b=5,c=5​=2⋅5−25​
Multiply the numbers: 2⋅5=10=10−25​
=10−25​​
=(10−25​​+4)(−10−25​​+4)
Apply Difference of Two Squares Formula: (a+b)(a−b)=a2−b2a=4,b=10−25​​=42−(10−25​​)2
Simplify 42−(10−25​​)2:6+25​
42−(10−25​​)2
42=16
42
42=16=16
(10−25​​)2=10−25​
(10−25​​)2
Apply radical rule: a​=a21​=((10−25​)21​)2
Apply exponent rule: (ab)c=abc=(10−25​)21​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=10−25​
=16−(10−25​)
−(10−25​):−10+25​
−(10−25​)
Distribute parentheses=−(10)−(−25​)
Apply minus-plus rules−(−a)=a,−(a)=−a=−10+25​
=16−10+25​
Subtract the numbers: 16−10=6=6+25​
=6+25​
=6+25​−82​5−5​​+26−25​​
Factor −82​5−5​​+26−25​:2(−42​−5​+5​+13−5​)
−82​5−5​​+26−25​
Rewrite as=−2⋅42​5−5​​+2⋅13−25​
Factor out common term 2=2(−42​5−5​​+13−5​)
Expand −42​5−5​​+13−5​:−42​−5​+5​+13−5​
−42​5−5​​+13−5​
42​5−5​​=42​−5​+5​
42​5−5​​
Apply radical rule: a​b​=a⋅b​2​5−5​​=2(5−5​)​=42(5−5​)​
Factor 5−5​:−(5​−5)
5−5​
Factor out common term −1=−(5​−5)
=4−2(5​−5)​
Apply radical rule: assuming a≥0,b≥0−2(5​−5)​=2​−(5​−5)​=42​−(5​−5)​
Expand −(5​−5):−5​+5
−(5​−5)
Distribute parentheses=−(5​)−(−5)
Apply minus-plus rules−(−a)=a,−(a)=−a=−5​+5
=42​5−5​​
=−42​5−5​​+13−5​
=2(−42​5−5​​+13−5​)
=6+25​2(−42​−5​+5​+13−5​)​
Factor 6+25​:2(3+5​)
6+25​
Rewrite as=2⋅3+25​
Factor out common term 2=2(3+5​)
=2(3+5​)2(−42​−5​+5​+13−5​)​
Divide the numbers: 22​=1=(3+5​)−42​5−5​​+13−5​​
Remove parentheses: (a)=a=3+5​−42​5−5​​+13−5​​
Multiply by the conjugate 3−5​3−5​​=(3+5​)(3−5​)(−42​5−5​​+13−5​)(3−5​)​
(−42​5−5​​+13−5​)(3−5​)=410​5−5​​−122​5−5​​+44−165​
(−42​5−5​​+13−5​)(3−5​)
Distribute parentheses=(−42​5−5​​)⋅3+(−42​5−5​​)(−5​)+13⋅3+13(−5​)+(−5​)⋅3+(−5​)(−5​)
Apply minus-plus rules+(−a)=−a,(−a)(−b)=ab=−4⋅32​5−5​​+42​5​5−5​​+13⋅3−135​−35​+5​5​
Simplify −4⋅32​5−5​​+42​5​5−5​​+13⋅3−135​−35​+5​5​:410​5−5​​−122​5−5​​+44−165​
−4⋅32​5−5​​+42​5​5−5​​+13⋅3−135​−35​+5​5​
Add similar elements: −135​−35​=−165​=−4⋅32​5−5​​+42​5​5−5​​+13⋅3−165​+5​5​
4⋅32​5−5​​=122​5−5​​
4⋅32​5−5​​
Multiply the numbers: 4⋅3=12=122​5−5​​
42​5​5−5​​=410​5−5​​
42​5​5−5​​
Apply radical rule: a​b​=a⋅b​2​5​5−5​​=2⋅5(5−5​)​=42⋅5(5−5​)​
Multiply the numbers: 2⋅5=10=410(5−5​)​
Apply radical rule: assuming a≥0,b≥010(5−5​)​=10​5−5​​=410​5−5​​
13⋅3=39
13⋅3
Multiply the numbers: 13⋅3=39=39
5​5​=5
5​5​
Apply radical rule: a​a​=a5​5​=5=5
=−122​5−5​​+410​5−5​​+39−165​+5
Add the numbers: 39+5=44=410​5−5​​−122​5−5​​+44−165​
=410​5−5​​−122​5−5​​+44−165​
(3+5​)(3−5​)=4
(3+5​)(3−5​)
Apply Difference of Two Squares Formula: (a+b)(a−b)=a2−b2a=3,b=5​=32−(5​)2
Simplify 32−(5​)2:4
32−(5​)2
32=9
32
32=9=9
(5​)2=5
(5​)2
Apply radical rule: a​=a21​=(521​)2
Apply exponent rule: (ab)c=abc=521​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=5
=9−5
Subtract the numbers: 9−5=4=4
=4
=4410​5−5​​−122​5−5​​+44−165​​
Factor 410​5−5​​−122​5−5​​+44−165​:4(10​−5​+5​−32​−5​+5​+11−45​)
410​5−5​​−122​5−5​​+44−165​
Rewrite as=410​5−5​​−4⋅32​5−5​​+4⋅11−4⋅45​
Factor out common term 4=4(10​5−5​​−32​5−5​​+11−45​)
Expand 10​5−5​​−32​5−5​​+11−45​:10​−5​+5​−32​−5​+5​+11−45​
10​5−5​​−32​5−5​​+11−45​
10​5−5​​=10​−5​+5​
10​5−5​​
Apply radical rule: a​b​=a⋅b​10​5−5​​=10(5−5​)​=10(5−5​)​
Factor 5−5​:−(5​−5)
5−5​
Factor out common term −1=−(5​−5)
=−10(5​−5)​
Apply radical rule: assuming a≥0,b≥0=10​−(5​−5)​
Expand −(5​−5):−5​+5
−(5​−5)
Distribute parentheses=−(5​)−(−5)
Apply minus-plus rules−(−a)=a,−(a)=−a=−5​+5
=10​5−5​​
32​5−5​​=32​−5​+5​
32​5−5​​
Apply radical rule: a​b​=a⋅b​2​5−5​​=2(5−5​)​=32(5−5​)​
Factor 5−5​:−(5​−5)
5−5​
Factor out common term −1=−(5​−5)
=3−2(5​−5)​
Apply radical rule: assuming a≥0,b≥0−2(5​−5)​=2​−(5​−5)​=32​−(5​−5)​
Expand −(5​−5):−5​+5
−(5​−5)
Distribute parentheses=−(5​)−(−5)
Apply minus-plus rules−(−a)=a,−(a)=−a=−5​+5
=32​5−5​​
=10​5−5​​−32​5−5​​+11−45​
=4(10​5−5​​−32​5−5​​+11−45​)
=44(10​−5​+5​−32​−5​+5​+11−45​)​
Divide the numbers: 44​=1=10​5−5​​−32​5−5​​+11−45​
=10​5−5​​−32​5−5​​+11−45​​
tan(θ)=10​5−5​​−32​5−5​​+11−45​​
tan(θ)=10​5−5​​−32​5−5​​+11−45​​
tan(θ)=10​5−5​​−32​5−5​​+11−45​​
Apply trig inverse properties
tan(θ)=10​5−5​​−32​5−5​​+11−45​​
General solutions for tan(θ)=10​5−5​​−32​5−5​​+11−45​​tan(x)=a⇒x=arctan(a)+180∘nθ=arctan(10​5−5​​−32​5−5​​+11−45​​)+180∘n
θ=arctan(10​5−5​​−32​5−5​​+11−45​​)+180∘n
Show solutions in decimal formθ=0.47123…+180∘n

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

3-sin(x)=cos(2x)cot^2(x)-cot(x)-2=0cos^2(θ)=0.1831tan(a+5)=sqrt(2sin(30)+sec(245))cot(x)=tan(25)

Frequently Asked Questions (FAQ)

  • What is the general solution for tan(θ)cos(27)=cos(63) ?

    The general solution for tan(θ)cos(27)=cos(63) is θ=0.47123…+180n
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024