Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

sin(10)=2sin(a)cos(a)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

sin(10∘)=2sin(a)cos(a)

Solution

a=5∘+180∘n,a=90∘−5∘+180∘n
+1
Radians
a=36π​+πn,a=2π​−36π​+πn
Solution steps
sin(10∘)=2sin(a)cos(a)
Subtract 2sin(a)cos(a) from both sidessin(10∘)−2sin(a)cos(a)=0
Rewrite using trig identities
sin(10∘)−2sin(a)cos(a)
Use the Double Angle identity: 2sin(x)cos(x)=sin(2x)=sin(10∘)−sin(2a)
sin(10∘)−sin(2a)=0
Move sin(10∘)to the right side
sin(10∘)−sin(2a)=0
Subtract sin(10∘) from both sidessin(10∘)−sin(2a)−sin(10∘)=0−sin(10∘)
Simplify−sin(2a)=−sin(10∘)
−sin(2a)=−sin(10∘)
Divide both sides by −1
−sin(2a)=−sin(10∘)
Divide both sides by −1−1−sin(2a)​=−1−sin(10∘)​
Simplify
−1−sin(2a)​=−1−sin(10∘)​
Simplify −1−sin(2a)​:sin(2a)
−1−sin(2a)​
Apply the fraction rule: −b−a​=ba​=1sin(2a)​
Apply rule 1a​=a=sin(2a)
Simplify −1−sin(10∘)​:sin(10∘)
−1−sin(10∘)​
Apply the fraction rule: −b−a​=ba​=1sin(10∘)​
Apply the fraction rule: 1a​=a=sin(10∘)
sin(2a)=sin(10∘)
sin(2a)=sin(10∘)
sin(2a)=sin(10∘)
Apply trig inverse properties
sin(2a)=sin(10∘)
General solutions for sin(2a)=sin(10∘)sin(x)=a⇒x=arcsin(a)+360∘n,x=180∘−arcsin(a)+360∘n2a=arcsin(sin(10∘))+360∘n,2a=180∘−arcsin(sin(10∘))+360∘n
2a=arcsin(sin(10∘))+360∘n,2a=180∘−arcsin(sin(10∘))+360∘n
Solve 2a=arcsin(sin(10∘))+360∘n:a=5∘+180∘n
2a=arcsin(sin(10∘))+360∘n
Divide both sides by 2
2a=arcsin(sin(10∘))+360∘n
Divide both sides by 222a​=2arcsin(sin(10∘))​+2360∘n​
Simplify
22a​=2arcsin(sin(10∘))​+2360∘n​
Simplify 22a​:a
22a​
Divide the numbers: 22​=1=a
Simplify 2arcsin(sin(10∘))​+2360∘n​:5∘+180∘n
2arcsin(sin(10∘))​+2360∘n​
2arcsin(sin(10∘))​=5∘
2arcsin(sin(10∘))​
arcsin(sin(10∘))=10∘
arcsin(sin(10∘))
For −90∘≤a≤90∘,arcsin(sin(x))=x
−90∘≤10∘≤90∘=10∘
=210∘​
Apply the fraction rule: acb​​=c⋅ab​=18⋅2180∘​
Multiply the numbers: 18⋅2=36=5∘
=5∘+2360∘n​
2360∘n​=180∘n
2360∘n​
Divide the numbers: 22​=1=180∘n
=5∘+180∘n
a=5∘+180∘n
a=5∘+180∘n
a=5∘+180∘n
Solve 2a=180∘−arcsin(sin(10∘))+360∘n:a=90∘−5∘+180∘n
2a=180∘−arcsin(sin(10∘))+360∘n
Divide both sides by 2
2a=180∘−arcsin(sin(10∘))+360∘n
Divide both sides by 222a​=90∘−2arcsin(sin(10∘))​+2360∘n​
Simplify
22a​=90∘−2arcsin(sin(10∘))​+2360∘n​
Simplify 22a​:a
22a​
Divide the numbers: 22​=1=a
Simplify 90∘−2arcsin(sin(10∘))​+2360∘n​:90∘−5∘+180∘n
90∘−2arcsin(sin(10∘))​+2360∘n​
2arcsin(sin(10∘))​=5∘
2arcsin(sin(10∘))​
arcsin(sin(10∘))=10∘
arcsin(sin(10∘))
For −90∘≤a≤90∘,arcsin(sin(x))=x
−90∘≤10∘≤90∘=10∘
=210∘​
Apply the fraction rule: acb​​=c⋅ab​=18⋅2180∘​
Multiply the numbers: 18⋅2=36=5∘
=90∘−5∘+2360∘n​
2360∘n​=180∘n
2360∘n​
Divide the numbers: 22​=1=180∘n
=90∘−5∘+180∘n
a=90∘−5∘+180∘n
a=90∘−5∘+180∘n
a=90∘−5∘+180∘n
a=5∘+180∘n,a=90∘−5∘+180∘n

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

cos^2(x)=2+2sin(x),0<= x<= 2picos^2(x)= 3/51-sec^2(x)=tan^2(x)csc^2(x)=(1/(cos(x)))^2-2cos^2(x)+3cos(x)=1

Frequently Asked Questions (FAQ)

  • What is the general solution for sin(10)=2sin(a)cos(a) ?

    The general solution for sin(10)=2sin(a)cos(a) is a=5+180n,a=90-5+180n
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024