Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

-8sin(2θ+45)=-4,0<= x<360

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

−8sin(2θ+45∘)=−4,0≤x<360∘

Solution

θ=52.5∘,θ=172.5∘,θ=232.5∘,θ=352.5∘
+1
Radians
θ=247π​,θ=2423π​,θ=2431π​,θ=2447π​
Solution steps
−8sin(2θ+45∘)=−4,0≤x<360∘
Divide both sides by −8
−8sin(2θ+45∘)=−4
Divide both sides by −8−8−8sin(2θ+45∘)​=−8−4​
Simplify
−8−8sin(2θ+45∘)​=−8−4​
Simplify −8−8sin(2θ+45∘)​:sin(2θ+45∘)
−8−8sin(2θ+45∘)​
Apply the fraction rule: −b−a​=ba​=88sin(2θ+45∘)​
Divide the numbers: 88​=1=sin(2θ+45∘)
Simplify −8−4​:21​
−8−4​
Apply the fraction rule: −b−a​=ba​=84​
Cancel the common factor: 4=21​
sin(2θ+45∘)=21​
sin(2θ+45∘)=21​
sin(2θ+45∘)=21​
General solutions for sin(2θ+45∘)=21​
sin(x) periodicity table with 360∘n cycle:
x030∘45∘60∘90∘120∘135∘150∘​sin(x)021​22​​23​​123​​22​​21​​x180∘210∘225∘240∘270∘300∘315∘330∘​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
2θ+45∘=30∘+360∘n,2θ+45∘=150∘+360∘n
2θ+45∘=30∘+360∘n,2θ+45∘=150∘+360∘n
Solve 2θ+45∘=30∘+360∘n:θ=180∘n−7.5∘
2θ+45∘=30∘+360∘n
Move 45∘to the right side
2θ+45∘=30∘+360∘n
Subtract 45∘ from both sides2θ+45∘−45∘=30∘+360∘n−45∘
Simplify
2θ+45∘−45∘=30∘+360∘n−45∘
Simplify 2θ+45∘−45∘:2θ
2θ+45∘−45∘
Add similar elements: 45∘−45∘=0
=2θ
Simplify 30∘+360∘n−45∘:360∘n−15∘
30∘+360∘n−45∘
Group like terms=360∘n+30∘−45∘
Least Common Multiplier of 6,4:12
6,4
Least Common Multiplier (LCM)
Prime factorization of 6:2⋅3
6
6divides by 26=3⋅2=2⋅3
2,3 are all prime numbers, therefore no further factorization is possible=2⋅3
Prime factorization of 4:2⋅2
4
4divides by 24=2⋅2=2⋅2
Multiply each factor the greatest number of times it occurs in either 6 or 4=2⋅2⋅3
Multiply the numbers: 2⋅2⋅3=12=12
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 12
For 30∘:multiply the denominator and numerator by 230∘=6⋅2180∘2​=30∘
For 45∘:multiply the denominator and numerator by 345∘=4⋅3180∘3​=45∘
=30∘−45∘
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=12180∘2−180∘3​
Add similar elements: 360∘−540∘=−180∘=12−180∘​
Apply the fraction rule: b−a​=−ba​=360∘n−15∘
2θ=360∘n−15∘
2θ=360∘n−15∘
2θ=360∘n−15∘
Divide both sides by 2
2θ=360∘n−15∘
Divide both sides by 222θ​=2360∘n​−215∘​
Simplify
22θ​=2360∘n​−215∘​
Simplify 22θ​:θ
22θ​
Divide the numbers: 22​=1=θ
Simplify 2360∘n​−215∘​:180∘n−7.5∘
2360∘n​−215∘​
2360∘n​=180∘n
2360∘n​
Divide the numbers: 22​=1=180∘n
215∘​=7.5∘
215∘​
Apply the fraction rule: acb​​=c⋅ab​=12⋅2180∘​
Multiply the numbers: 12⋅2=24=7.5∘
=180∘n−7.5∘
θ=180∘n−7.5∘
θ=180∘n−7.5∘
θ=180∘n−7.5∘
Solve 2θ+45∘=150∘+360∘n:θ=180∘n+52.5∘
2θ+45∘=150∘+360∘n
Move 45∘to the right side
2θ+45∘=150∘+360∘n
Subtract 45∘ from both sides2θ+45∘−45∘=150∘+360∘n−45∘
Simplify
2θ+45∘−45∘=150∘+360∘n−45∘
Simplify 2θ+45∘−45∘:2θ
2θ+45∘−45∘
Add similar elements: 45∘−45∘=0
=2θ
Simplify 150∘+360∘n−45∘:360∘n+105∘
150∘+360∘n−45∘
Group like terms=360∘n−45∘+150∘
Least Common Multiplier of 4,6:12
4,6
Least Common Multiplier (LCM)
Prime factorization of 4:2⋅2
4
4divides by 24=2⋅2=2⋅2
Prime factorization of 6:2⋅3
6
6divides by 26=3⋅2=2⋅3
2,3 are all prime numbers, therefore no further factorization is possible=2⋅3
Multiply each factor the greatest number of times it occurs in either 4 or 6=2⋅2⋅3
Multiply the numbers: 2⋅2⋅3=12=12
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 12
For 45∘:multiply the denominator and numerator by 345∘=4⋅3180∘3​=45∘
For 150∘:multiply the denominator and numerator by 2150∘=6⋅2900∘2​=150∘
=−45∘+150∘
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=12−180∘3+1800∘​
Add similar elements: −540∘+1800∘=1260∘=360∘n+105∘
2θ=360∘n+105∘
2θ=360∘n+105∘
2θ=360∘n+105∘
Divide both sides by 2
2θ=360∘n+105∘
Divide both sides by 222θ​=2360∘n​+2105∘​
Simplify
22θ​=2360∘n​+2105∘​
Simplify 22θ​:θ
22θ​
Divide the numbers: 22​=1=θ
Simplify 2360∘n​+2105∘​:180∘n+52.5∘
2360∘n​+2105∘​
2360∘n​=180∘n
2360∘n​
Divide the numbers: 22​=1=180∘n
2105∘​=52.5∘
2105∘​
Apply the fraction rule: acb​​=c⋅ab​=12⋅21260∘​
Multiply the numbers: 12⋅2=24=52.5∘
=180∘n+52.5∘
θ=180∘n+52.5∘
θ=180∘n+52.5∘
θ=180∘n+52.5∘
θ=180∘n−7.5∘,θ=180∘n+52.5∘
Solutions for the range 0≤x<360∘θ=52.5∘,θ=172.5∘,θ=232.5∘,θ=352.5∘

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

sin(b)=(10.21(sin(61.36)))/(11.47)cos(θ)=0.513cot(x)=-24/7sin(θ)=-2/3 ,180<θ<270solvefor x,Rf=e^{cos(2x)}

Frequently Asked Questions (FAQ)

  • What is the general solution for -8sin(2θ+45)=-4,0<= x<360 ?

    The general solution for -8sin(2θ+45)=-4,0<= x<360 is θ=52.5,θ=172.5,θ=232.5,θ=352.5
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024