Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

sin(2x)=sin^2(2x)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

sin(2x)=sin2(2x)

Solution

x=4π​+πn,x=πn,x=2π​+πn
+1
Degrees
x=45∘+180∘n,x=0∘+180∘n,x=90∘+180∘n
Solution steps
sin(2x)=sin2(2x)
Solve by substitution
sin(2x)=sin2(2x)
Let: sin(2x)=uu=u2
u=u2:u=1,u=0
u=u2
Switch sidesu2=u
Move uto the left side
u2=u
Subtract u from both sidesu2−u=u−u
Simplifyu2−u=0
u2−u=0
Solve with the quadratic formula
u2−u=0
Quadratic Equation Formula:
For a=1,b=−1,c=0u1,2​=2⋅1−(−1)±(−1)2−4⋅1⋅0​​
u1,2​=2⋅1−(−1)±(−1)2−4⋅1⋅0​​
(−1)2−4⋅1⋅0​=1
(−1)2−4⋅1⋅0​
(−1)2=1
(−1)2
Apply exponent rule: (−a)n=an,if n is even(−1)2=12=12
Apply rule 1a=1=1
4⋅1⋅0=0
4⋅1⋅0
Apply rule 0⋅a=0=0
=1−0​
Subtract the numbers: 1−0=1=1​
Apply rule 1​=1=1
u1,2​=2⋅1−(−1)±1​
Separate the solutionsu1​=2⋅1−(−1)+1​,u2​=2⋅1−(−1)−1​
u=2⋅1−(−1)+1​:1
2⋅1−(−1)+1​
Apply rule −(−a)=a=2⋅11+1​
Add the numbers: 1+1=2=2⋅12​
Multiply the numbers: 2⋅1=2=22​
Apply rule aa​=1=1
u=2⋅1−(−1)−1​:0
2⋅1−(−1)−1​
Apply rule −(−a)=a=2⋅11−1​
Subtract the numbers: 1−1=0=2⋅10​
Multiply the numbers: 2⋅1=2=20​
Apply rule a0​=0,a=0=0
The solutions to the quadratic equation are:u=1,u=0
Substitute back u=sin(2x)sin(2x)=1,sin(2x)=0
sin(2x)=1,sin(2x)=0
sin(2x)=1:x=4π​+πn
sin(2x)=1
General solutions for sin(2x)=1
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
2x=2π​+2πn
2x=2π​+2πn
Solve 2x=2π​+2πn:x=4π​+πn
2x=2π​+2πn
Divide both sides by 2
2x=2π​+2πn
Divide both sides by 222x​=22π​​+22πn​
Simplify
22x​=22π​​+22πn​
Simplify 22x​:x
22x​
Divide the numbers: 22​=1=x
Simplify 22π​​+22πn​:4π​+πn
22π​​+22πn​
22π​​=4π​
22π​​
Apply the fraction rule: acb​​=c⋅ab​=2⋅2π​
Multiply the numbers: 2⋅2=4=4π​
22πn​=πn
22πn​
Divide the numbers: 22​=1=πn
=4π​+πn
x=4π​+πn
x=4π​+πn
x=4π​+πn
x=4π​+πn
sin(2x)=0:x=πn,x=2π​+πn
sin(2x)=0
General solutions for sin(2x)=0
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
2x=0+2πn,2x=π+2πn
2x=0+2πn,2x=π+2πn
Solve 2x=0+2πn:x=πn
2x=0+2πn
0+2πn=2πn2x=2πn
Divide both sides by 2
2x=2πn
Divide both sides by 222x​=22πn​
Simplifyx=πn
x=πn
Solve 2x=π+2πn:x=2π​+πn
2x=π+2πn
Divide both sides by 2
2x=π+2πn
Divide both sides by 222x​=2π​+22πn​
Simplifyx=2π​+πn
x=2π​+πn
x=πn,x=2π​+πn
Combine all the solutionsx=4π​+πn,x=πn,x=2π​+πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

-8sin(2θ+45)=-4,0<= x<360sin(b)=(10.21(sin(61.36)))/(11.47)cos(θ)=0.513cot(x)=-24/7sin(θ)=-2/3 ,180<θ<270

Frequently Asked Questions (FAQ)

  • What is the general solution for sin(2x)=sin^2(2x) ?

    The general solution for sin(2x)=sin^2(2x) is x= pi/4+pin,x=pin,x= pi/2+pin
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024