Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

(tan(x)-sec(x))^2=3

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

(tan(x)−sec(x))2=3

Solution

x=67π​+2πn,x=611π​+2πn
+1
Degrees
x=210∘+360∘n,x=330∘+360∘n
Solution steps
(tan(x)−sec(x))2=3
Subtract 3 from both sides(tan(x)−sec(x))2−3=0
Express with sin, cos(cos(x)sin(x)​−cos(x)1​)2−3=0
Simplify (cos(x)sin(x)​−cos(x)1​)2−3:cos2(x)(sin(x)−1)2−3cos2(x)​
(cos(x)sin(x)​−cos(x)1​)2−3
Combine the fractions cos(x)sin(x)​−cos(x)1​:cos(x)sin(x)−1​
Apply rule ca​±cb​=ca±b​=cos(x)sin(x)−1​
=(cos(x)sin(x)−1​)2−3
Apply exponent rule: (ba​)c=bcac​=cos2(x)(sin(x)−1)2​−3
Convert element to fraction: 3=cos2(x)3cos2(x)​=cos2(x)(sin(x)−1)2​−cos2(x)3cos2(x)​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=cos2(x)(sin(x)−1)2−3cos2(x)​
cos2(x)(sin(x)−1)2−3cos2(x)​=0
g(x)f(x)​=0⇒f(x)=0(sin(x)−1)2−3cos2(x)=0
Add 3cos2(x) to both sidessin2(x)−2sin(x)+1=3cos2(x)
Square both sides(sin2(x)−2sin(x)+1)2=(3cos2(x))2
Subtract (3cos2(x))2 from both sides(sin2(x)−2sin(x)+1)2−9cos4(x)=0
Factor (sin2(x)−2sin(x)+1)2−9cos4(x):(sin2(x)−2sin(x)+1+3cos2(x))(sin2(x)−2sin(x)+1−3cos2(x))
(sin2(x)−2sin(x)+1)2−9cos4(x)
Rewrite (sin2(x)−2sin(x)+1)2−9cos4(x) as (sin2(x)−2sin(x)+1)2−(3cos2(x))2
(sin2(x)−2sin(x)+1)2−9cos4(x)
Rewrite 9 as 32=(sin2(x)−2sin(x)+1)2−32cos4(x)
Apply exponent rule: abc=(ab)ccos4(x)=(cos2(x))2=(sin2(x)−2sin(x)+1)2−32(cos2(x))2
Apply exponent rule: ambm=(ab)m32(cos2(x))2=(3cos2(x))2=(sin2(x)−2sin(x)+1)2−(3cos2(x))2
=(sin2(x)−2sin(x)+1)2−(3cos2(x))2
Apply Difference of Two Squares Formula: x2−y2=(x+y)(x−y)(sin2(x)−2sin(x)+1)2−(3cos2(x))2=((sin2(x)−2sin(x)+1)+3cos2(x))((sin2(x)−2sin(x)+1)−3cos2(x))=((sin2(x)−2sin(x)+1)+3cos2(x))((sin2(x)−2sin(x)+1)−3cos2(x))
Refine=(sin2(x)+3cos2(x)−2sin(x)+1)(sin2(x)−3cos2(x)−2sin(x)+1)
(sin2(x)−2sin(x)+1+3cos2(x))(sin2(x)−2sin(x)+1−3cos2(x))=0
Solving each part separatelysin2(x)−2sin(x)+1+3cos2(x)=0orsin2(x)−2sin(x)+1−3cos2(x)=0
sin2(x)−2sin(x)+1+3cos2(x)=0:x=2π​+2πn
sin2(x)−2sin(x)+1+3cos2(x)=0
Rewrite using trig identities
1+sin2(x)−2sin(x)+3cos2(x)
Use the Pythagorean identity: cos2(x)+sin2(x)=1cos2(x)=1−sin2(x)=1+sin2(x)−2sin(x)+3(1−sin2(x))
Simplify 1+sin2(x)−2sin(x)+3(1−sin2(x)):−2sin2(x)−2sin(x)+4
1+sin2(x)−2sin(x)+3(1−sin2(x))
Expand 3(1−sin2(x)):3−3sin2(x)
3(1−sin2(x))
Apply the distributive law: a(b−c)=ab−aca=3,b=1,c=sin2(x)=3⋅1−3sin2(x)
Multiply the numbers: 3⋅1=3=3−3sin2(x)
=1+sin2(x)−2sin(x)+3−3sin2(x)
Simplify 1+sin2(x)−2sin(x)+3−3sin2(x):−2sin2(x)−2sin(x)+4
1+sin2(x)−2sin(x)+3−3sin2(x)
Group like terms=sin2(x)−2sin(x)−3sin2(x)+1+3
Add similar elements: sin2(x)−3sin2(x)=−2sin2(x)=−2sin2(x)−2sin(x)+1+3
Add the numbers: 1+3=4=−2sin2(x)−2sin(x)+4
=−2sin2(x)−2sin(x)+4
=−2sin2(x)−2sin(x)+4
4−2sin(x)−2sin2(x)=0
Solve by substitution
4−2sin(x)−2sin2(x)=0
Let: sin(x)=u4−2u−2u2=0
4−2u−2u2=0:u=−2,u=1
4−2u−2u2=0
Write in the standard form ax2+bx+c=0−2u2−2u+4=0
Solve with the quadratic formula
−2u2−2u+4=0
Quadratic Equation Formula:
For a=−2,b=−2,c=4u1,2​=2(−2)−(−2)±(−2)2−4(−2)⋅4​​
u1,2​=2(−2)−(−2)±(−2)2−4(−2)⋅4​​
(−2)2−4(−2)⋅4​=6
(−2)2−4(−2)⋅4​
Apply rule −(−a)=a=(−2)2+4⋅2⋅4​
Apply exponent rule: (−a)n=an,if n is even(−2)2=22=22+4⋅2⋅4​
Multiply the numbers: 4⋅2⋅4=32=22+32​
22=4=4+32​
Add the numbers: 4+32=36=36​
Factor the number: 36=62=62​
Apply radical rule: nan​=a62​=6=6
u1,2​=2(−2)−(−2)±6​
Separate the solutionsu1​=2(−2)−(−2)+6​,u2​=2(−2)−(−2)−6​
u=2(−2)−(−2)+6​:−2
2(−2)−(−2)+6​
Remove parentheses: (−a)=−a,−(−a)=a=−2⋅22+6​
Add the numbers: 2+6=8=−2⋅28​
Multiply the numbers: 2⋅2=4=−48​
Apply the fraction rule: −ba​=−ba​=−48​
Divide the numbers: 48​=2=−2
u=2(−2)−(−2)−6​:1
2(−2)−(−2)−6​
Remove parentheses: (−a)=−a,−(−a)=a=−2⋅22−6​
Subtract the numbers: 2−6=−4=−2⋅2−4​
Multiply the numbers: 2⋅2=4=−4−4​
Apply the fraction rule: −b−a​=ba​=44​
Apply rule aa​=1=1
The solutions to the quadratic equation are:u=−2,u=1
Substitute back u=sin(x)sin(x)=−2,sin(x)=1
sin(x)=−2,sin(x)=1
sin(x)=−2:No Solution
sin(x)=−2
−1≤sin(x)≤1NoSolution
sin(x)=1:x=2π​+2πn
sin(x)=1
General solutions for sin(x)=1
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
x=2π​+2πn
x=2π​+2πn
Combine all the solutionsx=2π​+2πn
sin2(x)−2sin(x)+1−3cos2(x)=0:x=2π​+2πn,x=67π​+2πn,x=611π​+2πn
sin2(x)−2sin(x)+1−3cos2(x)=0
Rewrite using trig identities
1+sin2(x)−2sin(x)−3cos2(x)
Use the Pythagorean identity: cos2(x)+sin2(x)=1cos2(x)=1−sin2(x)=1+sin2(x)−2sin(x)−3(1−sin2(x))
Simplify 1+sin2(x)−2sin(x)−3(1−sin2(x)):4sin2(x)−2sin(x)−2
1+sin2(x)−2sin(x)−3(1−sin2(x))
Expand −3(1−sin2(x)):−3+3sin2(x)
−3(1−sin2(x))
Apply the distributive law: a(b−c)=ab−aca=−3,b=1,c=sin2(x)=−3⋅1−(−3)sin2(x)
Apply minus-plus rules−(−a)=a=−3⋅1+3sin2(x)
Multiply the numbers: 3⋅1=3=−3+3sin2(x)
=1+sin2(x)−2sin(x)−3+3sin2(x)
Simplify 1+sin2(x)−2sin(x)−3+3sin2(x):4sin2(x)−2sin(x)−2
1+sin2(x)−2sin(x)−3+3sin2(x)
Group like terms=sin2(x)−2sin(x)+3sin2(x)+1−3
Add similar elements: sin2(x)+3sin2(x)=4sin2(x)=4sin2(x)−2sin(x)+1−3
Add/Subtract the numbers: 1−3=−2=4sin2(x)−2sin(x)−2
=4sin2(x)−2sin(x)−2
=4sin2(x)−2sin(x)−2
−2−2sin(x)+4sin2(x)=0
Solve by substitution
−2−2sin(x)+4sin2(x)=0
Let: sin(x)=u−2−2u+4u2=0
−2−2u+4u2=0:u=1,u=−21​
−2−2u+4u2=0
Write in the standard form ax2+bx+c=04u2−2u−2=0
Solve with the quadratic formula
4u2−2u−2=0
Quadratic Equation Formula:
For a=4,b=−2,c=−2u1,2​=2⋅4−(−2)±(−2)2−4⋅4(−2)​​
u1,2​=2⋅4−(−2)±(−2)2−4⋅4(−2)​​
(−2)2−4⋅4(−2)​=6
(−2)2−4⋅4(−2)​
Apply rule −(−a)=a=(−2)2+4⋅4⋅2​
Apply exponent rule: (−a)n=an,if n is even(−2)2=22=22+4⋅4⋅2​
Multiply the numbers: 4⋅4⋅2=32=22+32​
22=4=4+32​
Add the numbers: 4+32=36=36​
Factor the number: 36=62=62​
Apply radical rule: nan​=a62​=6=6
u1,2​=2⋅4−(−2)±6​
Separate the solutionsu1​=2⋅4−(−2)+6​,u2​=2⋅4−(−2)−6​
u=2⋅4−(−2)+6​:1
2⋅4−(−2)+6​
Apply rule −(−a)=a=2⋅42+6​
Add the numbers: 2+6=8=2⋅48​
Multiply the numbers: 2⋅4=8=88​
Apply rule aa​=1=1
u=2⋅4−(−2)−6​:−21​
2⋅4−(−2)−6​
Apply rule −(−a)=a=2⋅42−6​
Subtract the numbers: 2−6=−4=2⋅4−4​
Multiply the numbers: 2⋅4=8=8−4​
Apply the fraction rule: b−a​=−ba​=−84​
Cancel the common factor: 4=−21​
The solutions to the quadratic equation are:u=1,u=−21​
Substitute back u=sin(x)sin(x)=1,sin(x)=−21​
sin(x)=1,sin(x)=−21​
sin(x)=1:x=2π​+2πn
sin(x)=1
General solutions for sin(x)=1
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
x=2π​+2πn
x=2π​+2πn
sin(x)=−21​:x=67π​+2πn,x=611π​+2πn
sin(x)=−21​
General solutions for sin(x)=−21​
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
x=67π​+2πn,x=611π​+2πn
x=67π​+2πn,x=611π​+2πn
Combine all the solutionsx=2π​+2πn,x=67π​+2πn,x=611π​+2πn
Combine all the solutionsx=2π​+2πn,x=67π​+2πn,x=611π​+2πn
Verify solutions by plugging them into the original equation
Check the solutions by plugging them into (tan(x)−sec(x))2=3
Remove the ones that don't agree with the equation.
Check the solution 2π​+2πn:False
2π​+2πn
Plug in n=12π​+2π1
For (tan(x)−sec(x))2=3plug inx=2π​+2π1(tan(2π​+2π1)−sec(2π​+2π1))2=3
Undefined
⇒False
Check the solution 67π​+2πn:True
67π​+2πn
Plug in n=167π​+2π1
For (tan(x)−sec(x))2=3plug inx=67π​+2π1(tan(67π​+2π1)−sec(67π​+2π1))2=3
Refine3=3
⇒True
Check the solution 611π​+2πn:True
611π​+2πn
Plug in n=1611π​+2π1
For (tan(x)−sec(x))2=3plug inx=611π​+2π1(tan(611π​+2π1)−sec(611π​+2π1))2=3
Refine3=3
⇒True
x=67π​+2πn,x=611π​+2πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

solvefor y,ln(x^2+10)+csc(y)=csin(a)= 7/15(3sqrt(3))/(14)=sin(x)6cos(x)=2+2cos(x)cosh(z)=1,cosh(z)=-2

Frequently Asked Questions (FAQ)

  • What is the general solution for (tan(x)-sec(x))^2=3 ?

    The general solution for (tan(x)-sec(x))^2=3 is x=(7pi)/6+2pin,x=(11pi)/6+2pin
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024