Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

tan(x)+|tan(x)|=1,-2pi<= ,x<= 2pi

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

tan(x)+∣tan(x)∣=1,−2π≤,x≤2π

Solution

NoSolutionforx∈R
Solution steps
tan(x)+∣tan(x)∣=1,−2π,x≤2π
Solve by substitution
tan(x)+∣tan(x)∣=1
Let: tan(x)=uu+∣u∣=1
u+∣u∣=1:u=21​
u+∣u∣=1
Find positive and negative intervals
Find intervals for ∣u∣
u≥0: u≥0,∣u∣=u
Rewrite ∣u∣for u≥0:∣u∣=u
Apply absolute rule: If u≥0then ∣u∣=u∣u∣=u
u<0: u<0,∣u∣=−u
Rewrite ∣u∣for u<0:∣u∣=−u
Apply absolute rule: If u<0then ∣u∣=−u∣u∣=−u
Identify the intervals:u<0,u≥0
∣u∣​u<0−​u≥0+​​
u<0,u≥0
u<0,u≥0
Solve the inequality for each interval
u<0,u≥0
For u<0:No Solution
For u<0rewrite u+∣u∣=1 as u−u=1
u−u=1:No Solution
u−u=1
Add similar elements: u−u=00=1
The sides are not equalNoSolution
Combine the intervalsNoSolutionandu<0
Merge Overlapping Intervals
NoSolutionandu<0
The intersection of two intervals is the set of numbers which are in both intervals
No Solutionandu<0
NoSolution
NoSolution
For u≥0:u=21​
For u≥0rewrite u+∣u∣=1 as u+u=1
u+u=1:u=21​
u+u=1
Add similar elements: u+u=2u2u=1
Divide both sides by 2
2u=1
Divide both sides by 222u​=21​
Simplifyu=21​
u=21​
Combine the intervalsu=21​andu≥0
Merge Overlapping Intervals
u=21​andu≥0
The intersection of two intervals is the set of numbers which are in both intervals
u=21​andu≥0
u=21​
u=21​
Combine Solutions:NoSolutionoru=21​
NoSolutionoru=21​
u=21​
Substitute back u=tan(x)tan(x)=21​
tan(x)=21​
tan(x)=21​,−2π:No Solution
tan(x)=21​,−2π
Apply trig inverse properties
tan(x)=21​
General solutions for tan(x)=21​tan(x)=a⇒x=arctan(a)+πnx=arctan(21​)+πn
x=arctan(21​)+πn
Solutions for the range −2πNoSolution
Combine all the solutionsNoSolutionforx∈R

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

2sin^2(x)+3sin(x)=111.33=1.59cos(0.99(x-182))+12.146cos(3x)=6cos(x)4cos(x)=-2sqrt(2)tan(θ)=(0.15)/(0.5)

Frequently Asked Questions (FAQ)

  • What is the general solution for tan(x)+|tan(x)|=1,-2pi<= ,x<= 2pi ?

    The general solution for tan(x)+|tan(x)|=1,-2pi<= ,x<= 2pi is No Solution for x\in\mathbb{R}
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024