Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

(-3+4cos^2(θ))/(1-2sin(θ))=a+bsin(θ)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

1−2sin(θ)−3+4cos2(θ)​=a+bsin(θ)

Solution

θ=arcsin(2(−4+2b)b−2a+4a2+4ab−16a+b2−8b+16​​)+2πn,θ=π+arcsin(−2(−4+2b)b−2a+4a2+4ab−16a+b2−8b+16​​)+2πn,θ=arcsin(2(−4+2b)b−2a−4a2+4ab−16a+b2−8b+16​​)+2πn,θ=π+arcsin(−2(−4+2b)b−2a−4a2+4ab−16a+b2−8b+16​​)+2πn
Solution steps
1−2sin(θ)−3+4cos2(θ)​=a+bsin(θ)
Subtract a+bsin(θ) from both sides1−2sin(θ)−3+4cos2(θ)​−a−bsin(θ)=0
Simplify 1−2sin(θ)−3+4cos2(θ)​−a−bsin(θ):1−2sin(θ)−3+4cos2(θ)−a(1−2sin(θ))−bsin(θ)(1−2sin(θ))​
1−2sin(θ)−3+4cos2(θ)​−a−bsin(θ)
Convert element to fraction: a=1−2sin(θ)a(1−2sin(θ))​,bsin(θ)=1−2sin(θ)bsin(θ)(1−2sin(θ))​=1−2sin(θ)−3+4cos2(θ)​−1−2sin(θ)a(1−2sin(θ))​−1−2sin(θ)bsin(θ)(1−2sin(θ))​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=1−2sin(θ)−3+4cos2(θ)−a(1−2sin(θ))−bsin(θ)(1−2sin(θ))​
1−2sin(θ)−3+4cos2(θ)−a(1−2sin(θ))−bsin(θ)(1−2sin(θ))​=0
g(x)f(x)​=0⇒f(x)=0−3+4cos2(θ)−a(1−2sin(θ))−bsin(θ)(1−2sin(θ))=0
Rewrite using trig identities
−3−(1−2sin(θ))a+4cos2(θ)−(1−2sin(θ))sin(θ)b
Use the Pythagorean identity: cos2(x)+sin2(x)=1cos2(x)=1−sin2(x)=−3−(1−2sin(θ))a+4(1−sin2(θ))−(1−2sin(θ))sin(θ)b
Simplify −3−(1−2sin(θ))a+4(1−sin2(θ))−(1−2sin(θ))sin(θ)b:2bsin2(θ)+2asin(θ)−4sin2(θ)−bsin(θ)+1−a
−3−(1−2sin(θ))a+4(1−sin2(θ))−(1−2sin(θ))sin(θ)b
=−3−a(1−2sin(θ))+4(1−sin2(θ))−bsin(θ)(1−2sin(θ))
Expand −a(1−2sin(θ)):−a+2asin(θ)
−a(1−2sin(θ))
Apply the distributive law: a(b−c)=ab−aca=−a,b=1,c=2sin(θ)=−a⋅1−(−a)⋅2sin(θ)
Apply minus-plus rules−(−a)=a=−1⋅a+2asin(θ)
Multiply: 1⋅a=a=−a+2asin(θ)
=−3−a+2asin(θ)+4(1−sin2(θ))−(1−2sin(θ))sin(θ)b
Expand 4(1−sin2(θ)):4−4sin2(θ)
4(1−sin2(θ))
Apply the distributive law: a(b−c)=ab−aca=4,b=1,c=sin2(θ)=4⋅1−4sin2(θ)
Multiply the numbers: 4⋅1=4=4−4sin2(θ)
=−3−a+2asin(θ)+4−4sin2(θ)−(1−2sin(θ))sin(θ)b
Expand −sin(θ)b(1−2sin(θ)):−bsin(θ)+2bsin2(θ)
−sin(θ)b(1−2sin(θ))
Apply the distributive law: a(b−c)=ab−aca=−sin(θ)b,b=1,c=2sin(θ)=−sin(θ)b⋅1−(−sin(θ)b)⋅2sin(θ)
Apply minus-plus rules−(−a)=a=−1⋅bsin(θ)+2bsin(θ)sin(θ)
Simplify −1⋅bsin(θ)+2bsin(θ)sin(θ):−bsin(θ)+2bsin2(θ)
−1⋅bsin(θ)+2bsin(θ)sin(θ)
1⋅bsin(θ)=bsin(θ)
1⋅bsin(θ)
Multiply: 1⋅b=b=bsin(θ)
2bsin(θ)sin(θ)=2bsin2(θ)
2bsin(θ)sin(θ)
Apply exponent rule: ab⋅ac=ab+csin(θ)sin(θ)=sin1+1(θ)=2bsin1+1(θ)
Add the numbers: 1+1=2=2bsin2(θ)
=−bsin(θ)+2bsin2(θ)
=−bsin(θ)+2bsin2(θ)
=−3−a+2asin(θ)+4−4sin2(θ)−bsin(θ)+2bsin2(θ)
Simplify −3−a+2asin(θ)+4−4sin2(θ)−bsin(θ)+2bsin2(θ):2bsin2(θ)+2asin(θ)−4sin2(θ)−bsin(θ)+1−a
−3−a+2asin(θ)+4−4sin2(θ)−bsin(θ)+2bsin2(θ)
Group like terms=2asin(θ)−bsin(θ)+2bsin2(θ)−4sin2(θ)−a−3+4
Add/Subtract the numbers: −3+4=1=2bsin2(θ)+2asin(θ)−4sin2(θ)−bsin(θ)+1−a
=2bsin2(θ)+2asin(θ)−4sin2(θ)−bsin(θ)+1−a
=2bsin2(θ)+2asin(θ)−4sin2(θ)−bsin(θ)+1−a
1−a−4sin2(θ)−sin(θ)b+2sin2(θ)b+2sin(θ)a=0
Solve by substitution
1−a−4sin2(θ)−sin(θ)b+2sin2(θ)b+2sin(θ)a=0
Let: sin(θ)=u1−a−4u2−ub+2u2b+2ua=0
1−a−4u2−ub+2u2b+2ua=0:u=2(−4+2b)b−2a+4a2+4ab−16a+b2−8b+16​​,u=2(−4+2b)b−2a−4a2+4ab−16a+b2−8b+16​​;b=2
1−a−4u2−ub+2u2b+2ua=0
Write in the standard form ax2+bx+c=0(−4+2b)u2+(−b+2a)u+1−a=0
Solve with the quadratic formula
(−4+2b)u2+(−b+2a)u+1−a=0
Quadratic Equation Formula:
For a=−4+2b,b=−b+2a,c=1−au1,2​=2(−4+2b)−(−b+2a)±(−b+2a)2−4(−4+2b)(1−a)​​
u1,2​=2(−4+2b)−(−b+2a)±(−b+2a)2−4(−4+2b)(1−a)​​
Simplify (−b+2a)2−4(−4+2b)(1−a)​:4a2+4ab−16a+b2−8b+16​
(−b+2a)2−4(−4+2b)(1−a)​
Expand (−b+2a)2−4(−4+2b)(1−a):4a2+4ab−16a+b2−8b+16
(−b+2a)2−4(−4+2b)(1−a)
(−b+2a)2:b2−4ab+4a2
Apply Perfect Square Formula: (a+b)2=a2+2ab+b2a=−b,b=2a
=(−b)2+2(−b)⋅2a+(2a)2
Simplify (−b)2+2(−b)⋅2a+(2a)2:b2−4ab+4a2
(−b)2+2(−b)⋅2a+(2a)2
Remove parentheses: (−a)=−a=(−b)2−2b⋅2a+(2a)2
(−b)2=b2
(−b)2
Apply exponent rule: (−a)n=an,if n is even(−b)2=b2=b2
2b⋅2a=4ab
2b⋅2a
Multiply the numbers: 2⋅2=4=4ab
(2a)2=4a2
(2a)2
Apply exponent rule: (a⋅b)n=anbn=22a2
22=4=4a2
=b2−4ab+4a2
=b2−4ab+4a2
=b2−4ab+4a2−4(−4+2b)(1−a)
Expand −4(−4+2b)(1−a):16−16a−8b+8ab
Expand (−4+2b)(1−a):−4+4a+2b−2ab
(−4+2b)(1−a)
Apply FOIL method: (a+b)(c+d)=ac+ad+bc+bda=−4,b=2b,c=1,d=−a=(−4)⋅1+(−4)(−a)+2b⋅1+2b(−a)
Apply minus-plus rules+(−a)=−a,(−a)(−b)=ab=−4⋅1+4a+2⋅1⋅b−2ab
Simplify −4⋅1+4a+2⋅1⋅b−2ab:−4+4a+2b−2ab
−4⋅1+4a+2⋅1⋅b−2ab
Multiply the numbers: 4⋅1=4=−4+4a+2⋅1⋅b−2ab
Multiply the numbers: 2⋅1=2=−4+4a+2b−2ab
=−4+4a+2b−2ab
=−4(−4+4a+2b−2ab)
Expand −4(−4+4a+2b−2ab):16−16a−8b+8ab
−4(−4+4a+2b−2ab)
Distribute parentheses=(−4)(−4)+(−4)⋅4a+(−4)⋅2b+(−4)(−2ab)
Apply minus-plus rules(−a)(−b)=ab,+(−a)=−a=4⋅4−4⋅4a−4⋅2b+4⋅2ab
Simplify 4⋅4−4⋅4a−4⋅2b+4⋅2ab:16−16a−8b+8ab
4⋅4−4⋅4a−4⋅2b+4⋅2ab
4⋅4=16
4⋅4
Multiply the numbers: 4⋅4=16=16
4⋅4a=16a
4⋅4a
Multiply the numbers: 4⋅4=16=16a
4⋅2b=8b
4⋅2b
Multiply the numbers: 4⋅2=8=8b
4⋅2ab=8ab
4⋅2ab
Multiply the numbers: 4⋅2=8=8ab
=16−16a−8b+8ab
=16−16a−8b+8ab
=16−16a−8b+8ab
=b2−4ab+4a2+16−16a−8b+8ab
Simplify b2−4ab+4a2+16−16a−8b+8ab:4a2+4ab−16a+b2−8b+16
b2−4ab+4a2+16−16a−8b+8ab
Group like terms=4a2−4ab+8ab−16a+b2−8b+16
Add similar elements: −4ab+8ab=4ab=4a2+4ab−16a+b2−8b+16
=4a2+4ab−16a+b2−8b+16
=4a2+4ab−16a+b2−8b+16​
u1,2​=2(−4+2b)−(−b+2a)±4a2+4ab−16a+b2−8b+16​​;b=2
Separate the solutionsu1​=2(−4+2b)−(−b+2a)+4a2+4ab−16a+b2−8b+16​​,u2​=2(−4+2b)−(−b+2a)−4a2+4ab−16a+b2−8b+16​​
u=2(−4+2b)−(−b+2a)+4a2+4ab−16a+b2−8b+16​​:2(−4+2b)b−2a+4a2+4ab−16a+b2−8b+16​​
2(−4+2b)−(−b+2a)+4a2+4ab−16a+b2−8b+16​​
−(−b+2a):b−2a
−(−b+2a)
Distribute parentheses=−(−b)−(2a)
Apply minus-plus rules−(−a)=a,−(a)=−a=b−2a
=2(2b−4)b−2a+4a2+4ab−16a+b2+16−8b​​
=2(−4+2b)b−2a+4a2+4ab−16a+b2−8b+16​​
u=2(−4+2b)−(−b+2a)−4a2+4ab−16a+b2−8b+16​​:2(−4+2b)b−2a−4a2+4ab−16a+b2−8b+16​​
2(−4+2b)−(−b+2a)−4a2+4ab−16a+b2−8b+16​​
−(−b+2a):b−2a
−(−b+2a)
Distribute parentheses=−(−b)−(2a)
Apply minus-plus rules−(−a)=a,−(a)=−a=b−2a
=2(2b−4)b−2a−4a2+4ab−16a+b2+16−8b​​
=2(−4+2b)b−2a−4a2+4ab−16a+b2−8b+16​​
The solutions to the quadratic equation are:u=2(−4+2b)b−2a+4a2+4ab−16a+b2−8b+16​​,u=2(−4+2b)b−2a−4a2+4ab−16a+b2−8b+16​​;b=2
Substitute back u=sin(θ)sin(θ)=2(−4+2b)b−2a+4a2+4ab−16a+b2−8b+16​​,sin(θ)=2(−4+2b)b−2a−4a2+4ab−16a+b2−8b+16​​;b=2
sin(θ)=2(−4+2b)b−2a+4a2+4ab−16a+b2−8b+16​​,sin(θ)=2(−4+2b)b−2a−4a2+4ab−16a+b2−8b+16​​;b=2
sin(θ)=2(−4+2b)b−2a+4a2+4ab−16a+b2−8b+16​​:θ=arcsin(2(−4+2b)b−2a+4a2+4ab−16a+b2−8b+16​​)+2πn,θ=π+arcsin(−2(−4+2b)b−2a+4a2+4ab−16a+b2−8b+16​​)+2πn
sin(θ)=2(−4+2b)b−2a+4a2+4ab−16a+b2−8b+16​​
Apply trig inverse properties
sin(θ)=2(−4+2b)b−2a+4a2+4ab−16a+b2−8b+16​​
General solutions for sin(θ)=2(−4+2b)b−2a+4a2+4ab−16a+b2−8b+16​​sin(x)=a⇒x=arcsin(a)+2πn,x=π+arcsin(a)+2πnθ=arcsin(2(−4+2b)b−2a+4a2+4ab−16a+b2−8b+16​​)+2πn,θ=π+arcsin(−2(−4+2b)b−2a+4a2+4ab−16a+b2−8b+16​​)+2πn
θ=arcsin(2(−4+2b)b−2a+4a2+4ab−16a+b2−8b+16​​)+2πn,θ=π+arcsin(−2(−4+2b)b−2a+4a2+4ab−16a+b2−8b+16​​)+2πn
sin(θ)=2(−4+2b)b−2a−4a2+4ab−16a+b2−8b+16​​:θ=arcsin(2(−4+2b)b−2a−4a2+4ab−16a+b2−8b+16​​)+2πn,θ=π+arcsin(−2(−4+2b)b−2a−4a2+4ab−16a+b2−8b+16​​)+2πn
sin(θ)=2(−4+2b)b−2a−4a2+4ab−16a+b2−8b+16​​
Apply trig inverse properties
sin(θ)=2(−4+2b)b−2a−4a2+4ab−16a+b2−8b+16​​
General solutions for sin(θ)=2(−4+2b)b−2a−4a2+4ab−16a+b2−8b+16​​sin(x)=a⇒x=arcsin(a)+2πn,x=π+arcsin(a)+2πnθ=arcsin(2(−4+2b)b−2a−4a2+4ab−16a+b2−8b+16​​)+2πn,θ=π+arcsin(−2(−4+2b)b−2a−4a2+4ab−16a+b2−8b+16​​)+2πn
θ=arcsin(2(−4+2b)b−2a−4a2+4ab−16a+b2−8b+16​​)+2πn,θ=π+arcsin(−2(−4+2b)b−2a−4a2+4ab−16a+b2−8b+16​​)+2πn
Combine all the solutionsθ=arcsin(2(−4+2b)b−2a+4a2+4ab−16a+b2−8b+16​​)+2πn,θ=π+arcsin(−2(−4+2b)b−2a+4a2+4ab−16a+b2−8b+16​​)+2πn,θ=arcsin(2(−4+2b)b−2a−4a2+4ab−16a+b2−8b+16​​)+2πn,θ=π+arcsin(−2(−4+2b)b−2a−4a2+4ab−16a+b2−8b+16​​)+2πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

2sin^2(x)-7sin(x)=-3,0<= x<= 2pisin^2(x)+cos^2(x)=cos(2x)(218)sin^2(x)+(126)sin(x)-88=03sin(3x)=0cos(θ)csc(θ)=sin(θ)sec(θ)

Frequently Asked Questions (FAQ)

  • What is the general solution for (-3+4cos^2(θ))/(1-2sin(θ))=a+bsin(θ) ?

    The general solution for (-3+4cos^2(θ))/(1-2sin(θ))=a+bsin(θ) is
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024