Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

2sinh(2x)-6cosh(x)=0

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

2sinh(2x)−6cosh(x)=0

Solution

x=ln(3.30277…)
+1
Degrees
x=68.45488…∘
Solution steps
2sinh(2x)−6cosh(x)=0
Rewrite using trig identities
2sinh(2x)−6cosh(x)=0
Use the Hyperbolic identity: sinh(x)=2ex−e−x​2⋅2e2x−e−2x​−6cosh(x)=0
Use the Hyperbolic identity: cosh(x)=2ex+e−x​2⋅2e2x−e−2x​−6⋅2ex+e−x​=0
2⋅2e2x−e−2x​−6⋅2ex+e−x​=0
2⋅2e2x−e−2x​−6⋅2ex+e−x​=0:x=ln(3.30277…)
2⋅2e2x−e−2x​−6⋅2ex+e−x​=0
Add 62ex+e−x​ to both sides2⋅2e2x−e−2x​−6⋅2ex+e−x​+6⋅2ex+e−x​=0+6⋅2ex+e−x​
Simplifye2x−e−2x=3(ex+e−x)
Apply exponent rules
e2x−e−2x=3(ex+e−x)
Apply exponent rule: abc=(ab)ce2x=(ex)2,e−2x=(ex)−2,e−x=(ex)−1(ex)2−(ex)−2=3(ex+(ex)−1)
(ex)2−(ex)−2=3(ex+(ex)−1)
Rewrite the equation with ex=u(u)2−(u)−2=3(u+(u)−1)
Solve u2−u−2=3(u+u−1):u≈−0.30277…,u≈3.30277…
u2−u−2=3(u+u−1)
Refineu2−u21​=3(u+u1​)
Multiply both sides by u2
u2−u21​=3(u+u1​)
Multiply both sides by u2u2u2−u21​u2=3(u+u1​)u2
Simplify
u2u2−u21​u2=3(u+u1​)u2
Simplify u2u2:u4
u2u2
Apply exponent rule: ab⋅ac=ab+cu2u2=u2+2=u2+2
Add the numbers: 2+2=4=u4
Simplify −u21​u2:−1
−u21​u2
Multiply fractions: a⋅cb​=ca⋅b​=−u21⋅u2​
Cancel the common factor: u2=−1
u4−1=3(u+u1​)u2
u4−1=3(u+u1​)u2
u4−1=3(u+u1​)u2
Expand 3(u+u1​)u2:3u3+3u
3(u+u1​)u2
=3u2(u+u1​)
Apply the distributive law: a(b+c)=ab+aca=3u2,b=u,c=u1​=3u2u+3u2u1​
=3u2u+3⋅u1​u2
Simplify 3u2u+3⋅u1​u2:3u3+3u
3u2u+3⋅u1​u2
3u2u=3u3
3u2u
Apply exponent rule: ab⋅ac=ab+cu2u=u2+1=3u2+1
Add the numbers: 2+1=3=3u3
3⋅u1​u2=3u
3⋅u1​u2
Multiply fractions: a⋅cb​=ca⋅b​=u1⋅3u2​
Multiply the numbers: 1⋅3=3=u3u2​
Cancel the common factor: u=3u
=3u3+3u
=3u3+3u
u4−1=3u3+3u
Solve u4−1=3u3+3u:u≈−0.30277…,u≈3.30277…
u4−1=3u3+3u
Move 3uto the left side
u4−1=3u3+3u
Subtract 3u from both sidesu4−1−3u=3u3+3u−3u
Simplifyu4−1−3u=3u3
u4−1−3u=3u3
Move 3u3to the left side
u4−1−3u=3u3
Subtract 3u3 from both sidesu4−1−3u−3u3=3u3−3u3
Simplifyu4−1−3u−3u3=0
u4−1−3u−3u3=0
Write in the standard form an​xn+…+a1​x+a0​=0u4−3u3−3u−1=0
Find one solution for u4−3u3−3u−1=0 using Newton-Raphson:u≈−0.30277…
u4−3u3−3u−1=0
Newton-Raphson Approximation Definition
f(u)=u4−3u3−3u−1
Find f′(u):4u3−9u2−3
dud​(u4−3u3−3u−1)
Apply the Sum/Difference Rule: (f±g)′=f′±g′=dud​(u4)−dud​(3u3)−dud​(3u)−dud​(1)
dud​(u4)=4u3
dud​(u4)
Apply the Power Rule: dxd​(xa)=a⋅xa−1=4u4−1
Simplify=4u3
dud​(3u3)=9u2
dud​(3u3)
Take the constant out: (a⋅f)′=a⋅f′=3dud​(u3)
Apply the Power Rule: dxd​(xa)=a⋅xa−1=3⋅3u3−1
Simplify=9u2
dud​(3u)=3
dud​(3u)
Take the constant out: (a⋅f)′=a⋅f′=3dudu​
Apply the common derivative: dudu​=1=3⋅1
Simplify=3
dud​(1)=0
dud​(1)
Derivative of a constant: dxd​(a)=0=0
=4u3−9u2−3−0
Simplify=4u3−9u2−3
Let u0​=0Compute un+1​ until Δun+1​<0.000001
u1​=−0.33333…:Δu1​=0.33333…
f(u0​)=04−3⋅03−3⋅0−1=−1f′(u0​)=4⋅03−9⋅02−3=−3u1​=−0.33333…
Δu1​=∣−0.33333…−0∣=0.33333…Δu1​=0.33333…
u2​=−0.30357…:Δu2​=0.02976…
f(u1​)=(−0.33333…)4−3(−0.33333…)3−3(−0.33333…)−1=0.12345…f′(u1​)=4(−0.33333…)3−9(−0.33333…)2−3=−4.14814…u2​=−0.30357…
Δu2​=∣−0.30357…−(−0.33333…)∣=0.02976…Δu2​=0.02976…
u3​=−0.30277…:Δu3​=0.00079…
f(u2​)=(−0.30357…)4−3(−0.30357…)3−3(−0.30357…)−1=0.00313…f′(u2​)=4(−0.30357…)3−9(−0.30357…)2−3=−3.94130…u3​=−0.30277…
Δu3​=∣−0.30277…−(−0.30357…)∣=0.00079…Δu3​=0.00079…
u4​=−0.30277…:Δu4​=5.27302E−7
f(u3​)=(−0.30277…)4−3(−0.30277…)3−3(−0.30277…)−1=2.07551E−6f′(u3​)=4(−0.30277…)3−9(−0.30277…)2−3=−3.93608…u4​=−0.30277…
Δu4​=∣−0.30277…−(−0.30277…)∣=5.27302E−7Δu4​=5.27302E−7
u≈−0.30277…
Apply long division:u+0.30277…u4−3u3−3u−1​=u3−3.30277…u2+u−3.30277…
u3−3.30277…u2+u−3.30277…≈0
Find one solution for u3−3.30277…u2+u−3.30277…=0 using Newton-Raphson:u≈3.30277…
u3−3.30277…u2+u−3.30277…=0
Newton-Raphson Approximation Definition
f(u)=u3−3.30277…u2+u−3.30277…
Find f′(u):3u2−6.60555…u+1.00000…
dud​(u3−3.30277…u2+u−3.30277…)
Apply the Sum/Difference Rule: (f±g)′=f′±g′=dud​(u3)−dud​(3.30277…u2)+dudu​−dud​(3.30277…)
dud​(u3)=3u2
dud​(u3)
Apply the Power Rule: dxd​(xa)=a⋅xa−1=3u3−1
Simplify=3u2
dud​(3.30277…u2)=6.60555…u
dud​(3.30277…u2)
Take the constant out: (a⋅f)′=a⋅f′=3.30277…dud​(u2)
Apply the Power Rule: dxd​(xa)=a⋅xa−1=3.30277…⋅2u2−1
Simplify=6.60555…u
dudu​=1
dudu​
Apply the common derivative: dudu​=1=1
dud​(3.30277…)=0
dud​(3.30277…)
Derivative of a constant: dxd​(a)=0=0
=3u2−6.60555…u+1−0
Simplify=3u2−6.60555…u+1.00000…
Let u0​=3Compute un+1​ until Δun+1​<0.000001
u1​=3.36999…:Δu1​=0.36999…
f(u0​)=33−3.30277…⋅32+3−3.30277…=−3.02775…f′(u0​)=3⋅32−6.60555…⋅3+1.00000…=8.18334…u1​=3.36999…
Δu1​=∣3.36999…−3∣=0.36999…Δu1​=0.36999…
u2​=3.30515…:Δu2​=0.06483…
f(u1​)=3.36999…3−3.30277…⋅3.36999…2+3.36999…−3.30277…=0.83055…f′(u1​)=3⋅3.36999…2−6.60555…⋅3.36999…+1.00000…=12.80985…u2​=3.30515…
Δu2​=∣3.30515…−3.36999…∣=0.06483…Δu2​=0.06483…
u3​=3.30277…:Δu3​=0.00237…
f(u2​)=3.30515…3−3.30277…⋅3.30515…2+3.30515…−3.30277…=0.02834…f′(u2​)=3⋅3.30515…2−6.60555…⋅3.30515…+1.00000…=11.93974…u3​=3.30277…
Δu3​=∣3.30277…−3.30515…∣=0.00237…Δu3​=0.00237…
u4​=3.30277…:Δu4​=3.12826E−6
f(u3​)=3.30277…3−3.30277…⋅3.30277…2+3.30277…−3.30277…=0.00003…f′(u3​)=3⋅3.30277…2−6.60555…⋅3.30277…+1.00000…=11.90836…u4​=3.30277…
Δu4​=∣3.30277…−3.30277…∣=3.12826E−6Δu4​=3.12826E−6
u5​=3.30277…:Δu5​=5.42823E−12
f(u4​)=3.30277…3−3.30277…⋅3.30277…2+3.30277…−3.30277…=6.46412E−11f′(u4​)=3⋅3.30277…2−6.60555…⋅3.30277…+1.00000…=11.90832…u5​=3.30277…
Δu5​=∣3.30277…−3.30277…∣=5.42823E−12Δu5​=5.42823E−12
u≈3.30277…
Apply long division:u−3.30277…u3−3.30277…u2+u−3.30277…​=u2+1
u2+1≈0
Find one solution for u2+1=0 using Newton-Raphson:No Solution for u∈R
u2+1=0
Newton-Raphson Approximation Definition
f(u)=u2+1
Find f′(u):2u
dud​(u2+1)
Apply the Sum/Difference Rule: (f±g)′=f′±g′=dud​(u2)+dud​(1)
dud​(u2)=2u
dud​(u2)
Apply the Power Rule: dxd​(xa)=a⋅xa−1=2u2−1
Simplify=2u
dud​(1)=0
dud​(1)
Derivative of a constant: dxd​(a)=0=0
=2u+0
Simplify=2u
Let u0​=−2Compute un+1​ until Δun+1​<0.000001
u1​=−0.74999…:Δu1​=1.25
f(u0​)=(−2)2+1=5.00000…f′(u0​)=2(−2)=−4.00000…u1​=−0.74999…
Δu1​=∣−0.74999…−(−2)∣=1.25Δu1​=1.25
u2​=0.29166…:Δu2​=1.04166…
f(u1​)=(−0.74999…)2+1=1.56250…f′(u1​)=2(−0.74999…)=−1.5u2​=0.29166…
Δu2​=∣0.29166…−(−0.74999…)∣=1.04166…Δu2​=1.04166…
u3​=−1.56845…:Δu3​=1.86011…
f(u2​)=0.29166…2+1=1.08506…f′(u2​)=2⋅0.29166…=0.58333…u3​=−1.56845…
Δu3​=∣−1.56845…−0.29166…∣=1.86011…Δu3​=1.86011…
u4​=−0.46544…:Δu4​=1.10301…
f(u3​)=(−1.56845…)2+1=3.46004…f′(u3​)=2(−1.56845…)=−3.13690…u4​=−0.46544…
Δu4​=∣−0.46544…−(−1.56845…)∣=1.10301…Δu4​=1.10301…
u5​=0.84153…:Δu5​=1.30697…
f(u4​)=(−0.46544…)2+1=1.21663…f′(u4​)=2(−0.46544…)=−0.93088…u5​=0.84153…
Δu5​=∣0.84153…−(−0.46544…)∣=1.30697…Δu5​=1.30697…
u6​=−0.17339…:Δu6​=1.01492…
f(u5​)=0.84153…2+1=1.70817…f′(u5​)=2⋅0.84153…=1.68306…u6​=−0.17339…
Δu6​=∣−0.17339…−0.84153…∣=1.01492…Δu6​=1.01492…
u7​=2.79697…:Δu7​=2.97036…
f(u6​)=(−0.17339…)2+1=1.03006…f′(u6​)=2(−0.17339…)=−0.34678…u7​=2.79697…
Δu7​=∣2.79697…−(−0.17339…)∣=2.97036…Δu7​=2.97036…
u8​=1.21972…:Δu8​=1.57725…
f(u7​)=2.79697…2+1=8.82306…f′(u7​)=2⋅2.79697…=5.59394…u8​=1.21972…
Δu8​=∣1.21972…−2.79697…∣=1.57725…Δu8​=1.57725…
u9​=0.19993…:Δu9​=1.01979…
f(u8​)=1.21972…2+1=2.48772…f′(u8​)=2⋅1.21972…=2.43944…u9​=0.19993…
Δu9​=∣0.19993…−1.21972…∣=1.01979…Δu9​=1.01979…
u10​=−2.40088…:Δu10​=2.60081…
f(u9​)=0.19993…2+1=1.03997…f′(u9​)=2⋅0.19993…=0.39986…u10​=−2.40088…
Δu10​=∣−2.40088…−0.19993…∣=2.60081…Δu10​=2.60081…
Cannot find solution
The solutions areu≈−0.30277…,u≈3.30277…
u≈−0.30277…,u≈3.30277…
Verify Solutions
Find undefined (singularity) points:u=0
Take the denominator(s) of u2−u−2 and compare to zero
Solve u2=0:u=0
u2=0
Apply rule xn=0⇒x=0
u=0
Take the denominator(s) of 3(u+u−1) and compare to zero
u=0
The following points are undefinedu=0
Combine undefined points with solutions:
u≈−0.30277…,u≈3.30277…
u≈−0.30277…,u≈3.30277…
Substitute back u=ex,solve for x
Solve ex=−0.30277…:No Solution for x∈R
ex=−0.30277…
af(x) cannot be zero or negative for x∈RNoSolutionforx∈R
Solve ex=3.30277…:x=ln(3.30277…)
ex=3.30277…
Apply exponent rules
ex=3.30277…
If f(x)=g(x), then ln(f(x))=ln(g(x))ln(ex)=ln(3.30277…)
Apply log rule: ln(ea)=aln(ex)=xx=ln(3.30277…)
x=ln(3.30277…)
x=ln(3.30277…)
x=ln(3.30277…)

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

-cos(x)=-1sin^2(x)csc(x)=-1/2sec^2(2x)-1=01=2cos(x)solvefor x,y=arcsin(x/(11))

Frequently Asked Questions (FAQ)

  • What is the general solution for 2sinh(2x)-6cosh(x)=0 ?

    The general solution for 2sinh(2x)-6cosh(x)=0 is x=ln(3.30277…)
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024