Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

sin^2(x)cos(x)= 2/(3pi)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

sin2(x)cos(x)=3π2​

Solution

x=1.34554…+2πn,x=2π−1.34554…+2πn,x=0.51672…+2πn,x=2π−0.51672…+2πn
+1
Degrees
x=77.09423…∘+360∘n,x=282.90576…∘+360∘n,x=29.60626…∘+360∘n,x=330.39373…∘+360∘n
Solution steps
sin2(x)cos(x)=3π2​
Subtract 3π2​ from both sidessin2(x)cos(x)−3π2​=0
Simplify sin2(x)cos(x)−3π2​:3π3πsin2(x)cos(x)−2​
sin2(x)cos(x)−3π2​
Convert element to fraction: sin2(x)cos(x)=3πsin2(x)cos(x)3π​=3πsin2(x)cos(x)⋅3π​−3π2​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=3πsin2(x)cos(x)⋅3π−2​
3π3πsin2(x)cos(x)−2​=0
g(x)f(x)​=0⇒f(x)=03πsin2(x)cos(x)−2=0
Rewrite using trig identities
−2+3cos(x)sin2(x)π
Use the Pythagorean identity: cos2(x)+sin2(x)=1sin2(x)=1−cos2(x)=−2+3cos(x)(1−cos2(x))π
−2+(1−cos2(x))⋅3cos(x)π=0
Solve by substitution
−2+(1−cos2(x))⋅3cos(x)π=0
Let: cos(x)=u−2+(1−u2)⋅3uπ=0
−2+(1−u2)⋅3uπ=0:u≈0.22334…,u≈0.86944…,u≈−1.09278…
−2+(1−u2)⋅3uπ=0
Expand −2+(1−u2)⋅3uπ:−2+3πu−3πu3
−2+(1−u2)⋅3uπ
=−2+3πu(1−u2)
Expand 3uπ(1−u2):3πu−3πu3
3uπ(1−u2)
Apply the distributive law: a(b−c)=ab−aca=3uπ,b=1,c=u2=3uπ1−3uπu2
=3⋅1πu−3πu2u
Simplify 3⋅1πu−3πu2u:3πu−3πu3
3⋅1πu−3πu2u
3⋅1πu=3πu
3⋅1πu
Multiply the numbers: 3⋅1=3=3πu
3πu2u=3πu3
3πu2u
Apply exponent rule: ab⋅ac=ab+cu2u=u2+1=3πu2+1
Add the numbers: 2+1=3=3πu3
=3πu−3πu3
=3πu−3πu3
=−2+3πu−3πu3
−2+3πu−3πu3=0
Write in the standard form an​xn+…+a1​x+a0​=0−3πu3+3πu−2=0
Find one solution for −9.42477…u3+9.42477…u−2=0 using Newton-Raphson:u≈0.22334…
−9.42477…u3+9.42477…u−2=0
Newton-Raphson Approximation Definition
f(u)=−9.42477…u3+9.42477…u−2
Find f′(u):−28.27433…u2+9.42477…
dud​(−9.42477…u3+9.42477…u−2)
Apply the Sum/Difference Rule: (f±g)′=f′±g′=−dud​(9.42477…u3)+dud​(9.42477…u)−dud​(2)
dud​(9.42477…u3)=28.27433…u2
dud​(9.42477…u3)
Take the constant out: (a⋅f)′=a⋅f′=9.42477…dud​(u3)
Apply the Power Rule: dxd​(xa)=a⋅xa−1=9.42477…⋅3u3−1
Simplify=28.27433…u2
dud​(9.42477…u)=9.42477…
dud​(9.42477…u)
Take the constant out: (a⋅f)′=a⋅f′=9.42477…dudu​
Apply the common derivative: dudu​=1=9.42477…⋅1
Simplify=9.42477…
dud​(2)=0
dud​(2)
Derivative of a constant: dxd​(a)=0=0
=−28.27433…u2+9.42477…−0
Simplify=−28.27433…u2+9.42477…
Let u0​=0Compute un+1​ until Δun+1​<0.000001
u1​=0.21220…:Δu1​=0.21220…
f(u0​)=−9.42477…⋅03+9.42477…⋅0−2=−2f′(u0​)=−28.27433…⋅02+9.42477…=9.42477…u1​=0.21220…
Δu1​=∣0.21220…−0∣=0.21220…Δu1​=0.21220…
u2​=0.22325…:Δu2​=0.01104…
f(u1​)=−9.42477…⋅0.21220…3+9.42477…⋅0.21220…−2=−0.09006…f′(u1​)=−28.27433…⋅0.21220…2+9.42477…=8.15153…u2​=0.22325…
Δu2​=∣0.22325…−0.21220…∣=0.01104…Δu2​=0.01104…
u3​=0.22334…:Δu3​=0.00009…
f(u2​)=−9.42477…⋅0.22325…3+9.42477…⋅0.22325…−2=−0.00074…f′(u2​)=−28.27433…⋅0.22325…2+9.42477…=8.01550…u3​=0.22334…
Δu3​=∣0.22334…−0.22325…∣=0.00009…Δu3​=0.00009…
u4​=0.22334…:Δu4​=6.80778E−9
f(u3​)=−9.42477…⋅0.22334…3+9.42477…⋅0.22334…−2=−5.45598E−8f′(u3​)=−28.27433…⋅0.22334…2+9.42477…=8.01432…u4​=0.22334…
Δu4​=∣0.22334…−0.22334…∣=6.80778E−9Δu4​=6.80778E−9
u≈0.22334…
Apply long division:u−0.22334…−3πu3+3πu−2​=−9.42477…u2−2.10500…u+8.95462…
−9.42477…u2−2.10500…u+8.95462…≈0
Find one solution for −9.42477…u2−2.10500…u+8.95462…=0 using Newton-Raphson:u≈0.86944…
−9.42477…u2−2.10500…u+8.95462…=0
Newton-Raphson Approximation Definition
f(u)=−9.42477…u2−2.10500…u+8.95462…
Find f′(u):−18.84955…u−2.10500…
dud​(−9.42477…u2−2.10500…u+8.95462…)
Apply the Sum/Difference Rule: (f±g)′=f′±g′=−dud​(9.42477…u2)−dud​(2.10500…u)+dud​(8.95462…)
dud​(9.42477…u2)=18.84955…u
dud​(9.42477…u2)
Take the constant out: (a⋅f)′=a⋅f′=9.42477…dud​(u2)
Apply the Power Rule: dxd​(xa)=a⋅xa−1=9.42477…⋅2u2−1
Simplify=18.84955…u
dud​(2.10500…u)=2.10500…
dud​(2.10500…u)
Take the constant out: (a⋅f)′=a⋅f′=2.10500…dudu​
Apply the common derivative: dudu​=1=2.10500…⋅1
Simplify=2.10500…
dud​(8.95462…)=0
dud​(8.95462…)
Derivative of a constant: dxd​(a)=0=0
=−18.84955…u−2.10500…+0
Simplify=−18.84955…u−2.10500…
Let u0​=4Compute un+1​ until Δun+1​<0.000001
u1​=2.06121…:Δu1​=1.93878…
f(u0​)=−9.42477…⋅42−2.10500…⋅4+8.95462…=−150.26184…f′(u0​)=−18.84955…⋅4−2.10500…=−77.50323…u1​=2.06121…
Δu1​=∣2.06121…−4∣=1.93878…Δu1​=1.93878…
u2​=1.19627…:Δu2​=0.86494…
f(u1​)=−9.42477…⋅2.06121…2−2.10500…⋅2.06121…+8.95462…=−35.42655…f′(u1​)=−18.84955…⋅2.06121…−2.10500…=−40.95805…u2​=1.19627…
Δu2​=∣1.19627…−2.06121…∣=0.86494…Δu2​=0.86494…
u3​=0.91027…:Δu3​=0.28599…
f(u2​)=−9.42477…⋅1.19627…2−2.10500…⋅1.19627…+8.95462…=−7.05099…f′(u2​)=−18.84955…⋅1.19627…−2.10500…=−24.65418…u3​=0.91027…
Δu3​=∣0.91027…−1.19627…∣=0.28599…Δu3​=0.28599…
u4​=0.87025…:Δu4​=0.04001…
f(u3​)=−9.42477…⋅0.91027…2−2.10500…⋅0.91027…+8.95462…=−0.77088…f′(u3​)=−18.84955…⋅0.91027…−2.10500…=−19.26328…u4​=0.87025…
Δu4​=∣0.87025…−0.91027…∣=0.04001…Δu4​=0.04001…
u5​=0.86944…:Δu5​=0.00081…
f(u4​)=−9.42477…⋅0.87025…2−2.10500…⋅0.87025…+8.95462…=−0.01509…f′(u4​)=−18.84955…⋅0.87025…−2.10500…=−18.50896…u5​=0.86944…
Δu5​=∣0.86944…−0.87025…∣=0.00081…Δu5​=0.00081…
u6​=0.86944…:Δu6​=3.38898E−7
f(u5​)=−9.42477…⋅0.86944…2−2.10500…⋅0.86944…+8.95462…=−6.26743E−6f′(u5​)=−18.84955…⋅0.86944…−2.10500…=−18.49358…u6​=0.86944…
Δu6​=∣0.86944…−0.86944…∣=3.38898E−7Δu6​=3.38898E−7
u≈0.86944…
Apply long division:u−0.86944…−9.42477…u2−2.10500…u+8.95462…​=−9.42477…u−10.29929…
−9.42477…u−10.29929…≈0
u≈−1.09278…
The solutions areu≈0.22334…,u≈0.86944…,u≈−1.09278…
Substitute back u=cos(x)cos(x)≈0.22334…,cos(x)≈0.86944…,cos(x)≈−1.09278…
cos(x)≈0.22334…,cos(x)≈0.86944…,cos(x)≈−1.09278…
cos(x)=0.22334…:x=arccos(0.22334…)+2πn,x=2π−arccos(0.22334…)+2πn
cos(x)=0.22334…
Apply trig inverse properties
cos(x)=0.22334…
General solutions for cos(x)=0.22334…cos(x)=a⇒x=arccos(a)+2πn,x=2π−arccos(a)+2πnx=arccos(0.22334…)+2πn,x=2π−arccos(0.22334…)+2πn
x=arccos(0.22334…)+2πn,x=2π−arccos(0.22334…)+2πn
cos(x)=0.86944…:x=arccos(0.86944…)+2πn,x=2π−arccos(0.86944…)+2πn
cos(x)=0.86944…
Apply trig inverse properties
cos(x)=0.86944…
General solutions for cos(x)=0.86944…cos(x)=a⇒x=arccos(a)+2πn,x=2π−arccos(a)+2πnx=arccos(0.86944…)+2πn,x=2π−arccos(0.86944…)+2πn
x=arccos(0.86944…)+2πn,x=2π−arccos(0.86944…)+2πn
cos(x)=−1.09278…:No Solution
cos(x)=−1.09278…
−1≤cos(x)≤1NoSolution
Combine all the solutionsx=arccos(0.22334…)+2πn,x=2π−arccos(0.22334…)+2πn,x=arccos(0.86944…)+2πn,x=2π−arccos(0.86944…)+2πn
Show solutions in decimal formx=1.34554…+2πn,x=2π−1.34554…+2πn,x=0.51672…+2πn,x=2π−0.51672…+2πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

tan(φ)=-1/(sqrt(6))sin(θ)= 4/5 cos(θ)19= 1/2*7.9*6.2sin(x)2tan(60-x)=tan(x)cos(x)=-0.71
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024