Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

6cosh^2(x)+4sinh(x)=7

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

6cosh2(x)+4sinh(x)=7

Solution

x=ln(1.21230…),x=ln(0.45880…)
+1
Degrees
x=11.03066…∘,x=−44.64062…∘
Solution steps
6cosh2(x)+4sinh(x)=7
Rewrite using trig identities
6cosh2(x)+4sinh(x)=7
Use the Hyperbolic identity: sinh(x)=2ex−e−x​6cosh2(x)+4⋅2ex−e−x​=7
Use the Hyperbolic identity: cosh(x)=2ex+e−x​6(2ex+e−x​)2+4⋅2ex−e−x​=7
6(2ex+e−x​)2+4⋅2ex−e−x​=7
6(2ex+e−x​)2+4⋅2ex−e−x​=7:x=ln(1.21230…),x=ln(0.45880…)
6(2ex+e−x​)2+4⋅2ex−e−x​=7
Apply exponent rules
6(2ex+e−x​)2+4⋅2ex−e−x​=7
Apply exponent rule: abc=(ab)ce−x=(ex)−16(2ex+(ex)−1​)2+4⋅2ex−(ex)−1​=7
6(2ex+(ex)−1​)2+4⋅2ex−(ex)−1​=7
Rewrite the equation with ex=u6(2u+(u)−1​)2+4⋅2u−(u)−1​=7
Solve 6(2u+u−1​)2+4⋅2u−u−1​=7:u≈1.21230…,u≈0.45880…,u≈−0.82487…,u≈−2.17956…
6(2u+u−1​)2+4⋅2u−u−1​=7
Refine2u23(u2+1)2​+u2(u2−1)​=7
Multiply by LCM
2u23(u2+1)2​+u2(u2−1)​=7
Find Least Common Multiplier of 2u2,u:2u2
2u2,u
Lowest Common Multiplier (LCM)
Compute an expression comprised of factors that appear either in 2u2 or u=2u2
Multiply by LCM=2u22u23(u2+1)2​⋅2u2+u2(u2−1)​⋅2u2=7⋅2u2
Simplify
2u23(u2+1)2​⋅2u2+u2(u2−1)​⋅2u2=7⋅2u2
Simplify 2u23(u2+1)2​⋅2u2:3(u2+1)2
2u23(u2+1)2​⋅2u2
Multiply fractions: a⋅cb​=ca⋅b​=2u23(u2+1)2⋅2u2​
Cancel the common factor: 2=u23(u2+1)2u2​
Cancel the common factor: u2=3(u2+1)2
Simplify u2(u2−1)​⋅2u2:4u(u2−1)
u2(u2−1)​⋅2u2
Multiply fractions: a⋅cb​=ca⋅b​=u2(u2−1)⋅2u2​
Multiply the numbers: 2⋅2=4=u4u2(u2−1)​
Cancel the common factor: u=4u(u2−1)
Simplify 7⋅2u2:14u2
7⋅2u2
Multiply the numbers: 7⋅2=14=14u2
3(u2+1)2+4u(u2−1)=14u2
3(u2+1)2+4u(u2−1)=14u2
3(u2+1)2+4u(u2−1)=14u2
Solve 3(u2+1)2+4u(u2−1)=14u2:u≈1.21230…,u≈0.45880…,u≈−0.82487…,u≈−2.17956…
3(u2+1)2+4u(u2−1)=14u2
Expand 3(u2+1)2+4u(u2−1):3u4+6u2+3+4u3−4u
3(u2+1)2+4u(u2−1)
(u2+1)2=u4+2u2+1
(u2+1)2
Apply Perfect Square Formula: (a+b)2=a2+2ab+b2a=u2,b=1
=(u2)2+2u2⋅1+12
Simplify (u2)2+2u2⋅1+12:u4+2u2+1
(u2)2+2u2⋅1+12
Apply rule 1a=112=1=(u2)2+2⋅1⋅u2+1
(u2)2=u4
(u2)2
Apply exponent rule: (ab)c=abc=u2⋅2
Multiply the numbers: 2⋅2=4=u4
2u2⋅1=2u2
2u2⋅1
Multiply the numbers: 2⋅1=2=2u2
=u4+2u2+1
=u4+2u2+1
=3(u4+2u2+1)+4u(u2−1)
Expand 3(u4+2u2+1):3u4+6u2+3
3(u4+2u2+1)
Distribute parentheses=3u4+3⋅2u2+3⋅1
Simplify 3u4+3⋅2u2+3⋅1:3u4+6u2+3
3u4+3⋅2u2+3⋅1
Multiply the numbers: 3⋅2=6=3u4+6u2+3⋅1
Multiply the numbers: 3⋅1=3=3u4+6u2+3
=3u4+6u2+3
=3u4+6u2+3+4u(u2−1)
Expand 4u(u2−1):4u3−4u
4u(u2−1)
Apply the distributive law: a(b−c)=ab−aca=4u,b=u2,c=1=4uu2−4u⋅1
=4u2u−4⋅1⋅u
Simplify 4u2u−4⋅1⋅u:4u3−4u
4u2u−4⋅1⋅u
4u2u=4u3
4u2u
Apply exponent rule: ab⋅ac=ab+cu2u=u2+1=4u2+1
Add the numbers: 2+1=3=4u3
4⋅1⋅u=4u
4⋅1⋅u
Multiply the numbers: 4⋅1=4=4u
=4u3−4u
=4u3−4u
=3u4+6u2+3+4u3−4u
3u4+6u2+3+4u3−4u=14u2
Move 14u2to the left side
3u4+6u2+3+4u3−4u=14u2
Subtract 14u2 from both sides3u4+6u2+3+4u3−4u−14u2=14u2−14u2
Simplify3u4+4u3−8u2−4u+3=0
3u4+4u3−8u2−4u+3=0
Find one solution for 3u4+4u3−8u2−4u+3=0 using Newton-Raphson:u≈1.21230…
3u4+4u3−8u2−4u+3=0
Newton-Raphson Approximation Definition
f(u)=3u4+4u3−8u2−4u+3
Find f′(u):12u3+12u2−16u−4
dud​(3u4+4u3−8u2−4u+3)
Apply the Sum/Difference Rule: (f±g)′=f′±g′=dud​(3u4)+dud​(4u3)−dud​(8u2)−dud​(4u)+dud​(3)
dud​(3u4)=12u3
dud​(3u4)
Take the constant out: (a⋅f)′=a⋅f′=3dud​(u4)
Apply the Power Rule: dxd​(xa)=a⋅xa−1=3⋅4u4−1
Simplify=12u3
dud​(4u3)=12u2
dud​(4u3)
Take the constant out: (a⋅f)′=a⋅f′=4dud​(u3)
Apply the Power Rule: dxd​(xa)=a⋅xa−1=4⋅3u3−1
Simplify=12u2
dud​(8u2)=16u
dud​(8u2)
Take the constant out: (a⋅f)′=a⋅f′=8dud​(u2)
Apply the Power Rule: dxd​(xa)=a⋅xa−1=8⋅2u2−1
Simplify=16u
dud​(4u)=4
dud​(4u)
Take the constant out: (a⋅f)′=a⋅f′=4dudu​
Apply the common derivative: dudu​=1=4⋅1
Simplify=4
dud​(3)=0
dud​(3)
Derivative of a constant: dxd​(a)=0=0
=12u3+12u2−16u−4+0
Simplify=12u3+12u2−16u−4
Let u0​=1Compute un+1​ until Δun+1​<0.000001
u1​=1.5:Δu1​=0.5
f(u0​)=3⋅14+4⋅13−8⋅12−4⋅1+3=−2f′(u0​)=12⋅13+12⋅12−16⋅1−4=4u1​=1.5
Δu1​=∣1.5−1∣=0.5Δu1​=0.5
u2​=1.30537…:Δu2​=0.19462…
f(u1​)=3⋅1.54+4⋅1.53−8⋅1.52−4⋅1.5+3=7.6875f′(u1​)=12⋅1.53+12⋅1.52−16⋅1.5−4=39.5u2​=1.30537…
Δu2​=∣1.30537…−1.5∣=0.19462…Δu2​=0.19462…
u3​=1.22652…:Δu3​=0.07885…
f(u2​)=3⋅1.30537…4+4⋅1.30537…3−8⋅1.30537…2−4⋅1.30537…+3=1.75491…f′(u2​)=12⋅1.30537…3+12⋅1.30537…2−16⋅1.30537…−4=22.25477…u3​=1.22652…
Δu3​=∣1.22652…−1.30537…∣=0.07885…Δu3​=0.07885…
u4​=1.21271…:Δu4​=0.01381…
f(u3​)=3⋅1.22652…4+4⋅1.22652…3−8⋅1.22652…2−4⋅1.22652…+3=0.22886…f′(u3​)=12⋅1.22652…3+12⋅1.22652…2−16⋅1.22652…−4=16.56956…u4​=1.21271…
Δu4​=∣1.21271…−1.22652…∣=0.01381…Δu4​=0.01381…
u5​=1.21230…:Δu5​=0.00040…
f(u4​)=3⋅1.21271…4+4⋅1.21271…3−8⋅1.21271…2−4⋅1.21271…+3=0.00639…f′(u4​)=12⋅1.21271…3+12⋅1.21271…2−16⋅1.21271…−4=15.64663…u5​=1.21230…
Δu5​=∣1.21230…−1.21271…∣=0.00040…Δu5​=0.00040…
u6​=1.21230…:Δu6​=3.5348E−7
f(u5​)=3⋅1.21230…4+4⋅1.21230…3−8⋅1.21230…2−4⋅1.21230…+3=5.52123E−6f′(u5​)=12⋅1.21230…3+12⋅1.21230…2−16⋅1.21230…−4=15.61963…u6​=1.21230…
Δu6​=∣1.21230…−1.21230…∣=3.5348E−7Δu6​=3.5348E−7
u≈1.21230…
Apply long division:u−1.21230…3u4+4u3−8u2−4u+3​=3u3+7.63690…u2+1.25824…u−2.47462…
3u3+7.63690…u2+1.25824…u−2.47462…≈0
Find one solution for 3u3+7.63690…u2+1.25824…u−2.47462…=0 using Newton-Raphson:u≈0.45880…
3u3+7.63690…u2+1.25824…u−2.47462…=0
Newton-Raphson Approximation Definition
f(u)=3u3+7.63690…u2+1.25824…u−2.47462…
Find f′(u):9u2+15.27381…u+1.25824…
dud​(3u3+7.63690…u2+1.25824…u−2.47462…)
Apply the Sum/Difference Rule: (f±g)′=f′±g′=dud​(3u3)+dud​(7.63690…u2)+dud​(1.25824…u)−dud​(2.47462…)
dud​(3u3)=9u2
dud​(3u3)
Take the constant out: (a⋅f)′=a⋅f′=3dud​(u3)
Apply the Power Rule: dxd​(xa)=a⋅xa−1=3⋅3u3−1
Simplify=9u2
dud​(7.63690…u2)=15.27381…u
dud​(7.63690…u2)
Take the constant out: (a⋅f)′=a⋅f′=7.63690…dud​(u2)
Apply the Power Rule: dxd​(xa)=a⋅xa−1=7.63690…⋅2u2−1
Simplify=15.27381…u
dud​(1.25824…u)=1.25824…
dud​(1.25824…u)
Take the constant out: (a⋅f)′=a⋅f′=1.25824…dudu​
Apply the common derivative: dudu​=1=1.25824…⋅1
Simplify=1.25824…
dud​(2.47462…)=0
dud​(2.47462…)
Derivative of a constant: dxd​(a)=0=0
=9u2+15.27381…u+1.25824…−0
Simplify=9u2+15.27381…u+1.25824…
Let u0​=2Compute un+1​ until Δun+1​<0.000001
u1​=1.19491…:Δu1​=0.80508…
f(u0​)=3⋅23+7.63690…⋅22+1.25824…⋅2−2.47462…=54.58948…f′(u0​)=9⋅22+15.27381…⋅2+1.25824…=67.80587…u1​=1.19491…
Δu1​=∣1.19491…−2∣=0.80508…Δu1​=0.80508…
u2​=0.72978…:Δu2​=0.46512…
f(u1​)=3⋅1.19491…3+7.63690…⋅1.19491…2+1.25824…⋅1.19491…−2.47462…=15.05138…f′(u1​)=9⋅1.19491…2+15.27381…⋅1.19491…+1.25824…=32.35955…u2​=0.72978…
Δu2​=∣0.72978…−1.19491…∣=0.46512…Δu2​=0.46512…
u3​=0.51598…:Δu3​=0.21379…
f(u2​)=3⋅0.72978…3+7.63690…⋅0.72978…2+1.25824…⋅0.72978…−2.47462…=3.67695…f′(u2​)=9⋅0.72978…2+15.27381…⋅0.72978…+1.25824…=17.19813…u3​=0.51598…
Δu3​=∣0.51598…−0.72978…∣=0.21379…Δu3​=0.21379…
u4​=0.46223…:Δu4​=0.05374…
f(u3​)=3⋅0.51598…3+7.63690…⋅0.51598…2+1.25824…⋅0.51598…−2.47462…=0.61999…f′(u3​)=9⋅0.51598…2+15.27381…⋅0.51598…+1.25824…=11.53548…u4​=0.46223…
Δu4​=∣0.46223…−0.51598…∣=0.05374…Δu4​=0.05374…
u5​=0.45882…:Δu5​=0.00341…
f(u4​)=3⋅0.46223…3+7.63690…⋅0.46223…2+1.25824…⋅0.46223…−2.47462…=0.03500…f′(u4​)=9⋅0.46223…2+15.27381…⋅0.46223…+1.25824…=10.24137…u5​=0.45882…
Δu5​=∣0.45882…−0.46223…∣=0.00341…Δu5​=0.00341…
u6​=0.45880…:Δu6​=0.00001…
f(u5​)=3⋅0.45882…3+7.63690…⋅0.45882…2+1.25824…⋅0.45882…−2.47462…=0.00013…f′(u5​)=9⋅0.45882…2+15.27381…⋅0.45882…+1.25824…=10.16082…u6​=0.45880…
Δu6​=∣0.45880…−0.45882…∣=0.00001…Δu6​=0.00001…
u7​=0.45880…:Δu7​=2.12808E−10
f(u6​)=3⋅0.45880…3+7.63690…⋅0.45880…2+1.25824…⋅0.45880…−2.47462…=2.16224E−9f′(u6​)=9⋅0.45880…2+15.27381…⋅0.45880…+1.25824…=10.16050…u7​=0.45880…
Δu7​=∣0.45880…−0.45880…∣=2.12808E−10Δu7​=2.12808E−10
u≈0.45880…
Apply long division:u−0.45880…3u3+7.63690…u2+1.25824…u−2.47462…​=3u2+9.01332…u+5.39361…
3u2+9.01332…u+5.39361…≈0
Find one solution for 3u2+9.01332…u+5.39361…=0 using Newton-Raphson:u≈−0.82487…
3u2+9.01332…u+5.39361…=0
Newton-Raphson Approximation Definition
f(u)=3u2+9.01332…u+5.39361…
Find f′(u):6u+9.01332…
dud​(3u2+9.01332…u+5.39361…)
Apply the Sum/Difference Rule: (f±g)′=f′±g′=dud​(3u2)+dud​(9.01332…u)+dud​(5.39361…)
dud​(3u2)=6u
dud​(3u2)
Take the constant out: (a⋅f)′=a⋅f′=3dud​(u2)
Apply the Power Rule: dxd​(xa)=a⋅xa−1=3⋅2u2−1
Simplify=6u
dud​(9.01332…u)=9.01332…
dud​(9.01332…u)
Take the constant out: (a⋅f)′=a⋅f′=9.01332…dudu​
Apply the common derivative: dudu​=1=9.01332…⋅1
Simplify=9.01332…
dud​(5.39361…)=0
dud​(5.39361…)
Derivative of a constant: dxd​(a)=0=0
=6u+9.01332…+0
Simplify=6u+9.01332…
Let u0​=−1Compute un+1​ until Δun+1​<0.000001
u1​=−0.79434…:Δu1​=0.20565…
f(u0​)=3(−1)2+9.01332…(−1)+5.39361…=−0.61970…f′(u0​)=6(−1)+9.01332…=3.01332…u1​=−0.79434…
Δu1​=∣−0.79434…−(−1)∣=0.20565…Δu1​=0.20565…
u2​=−0.82421…:Δu2​=0.02987…
f(u1​)=3(−0.79434…)2+9.01332…(−0.79434…)+5.39361…=0.12688…f′(u1​)=6(−0.79434…)+9.01332…=4.24726…u2​=−0.82421…
Δu2​=∣−0.82421…−(−0.79434…)∣=0.02987…Δu2​=0.02987…
u3​=−0.82487…:Δu3​=0.00065…
f(u2​)=3(−0.82421…)2+9.01332…(−0.82421…)+5.39361…=0.00267…f′(u2​)=6(−0.82421…)+9.01332…=4.06801…u3​=−0.82487…
Δu3​=∣−0.82487…−(−0.82421…)∣=0.00065…Δu3​=0.00065…
u4​=−0.82487…:Δu4​=3.19753E−7
f(u3​)=3(−0.82487…)2+9.01332…(−0.82487…)+5.39361…=1.2995E−6f′(u3​)=6(−0.82487…)+9.01332…=4.06407…u4​=−0.82487…
Δu4​=∣−0.82487…−(−0.82487…)∣=3.19753E−7Δu4​=3.19753E−7
u≈−0.82487…
Apply long division:u+0.82487…3u2+9.01332…u+5.39361…​=3u+6.53869…
3u+6.53869…≈0
u≈−2.17956…
The solutions areu≈1.21230…,u≈0.45880…,u≈−0.82487…,u≈−2.17956…
u≈1.21230…,u≈0.45880…,u≈−0.82487…,u≈−2.17956…
Verify Solutions
Find undefined (singularity) points:u=0
Take the denominator(s) of 6(2u+u−1​)2+42u−u−1​ and compare to zero
u=0
The following points are undefinedu=0
Combine undefined points with solutions:
u≈1.21230…,u≈0.45880…,u≈−0.82487…,u≈−2.17956…
u≈1.21230…,u≈0.45880…,u≈−0.82487…,u≈−2.17956…
Substitute back u=ex,solve for x
Solve ex=1.21230…:x=ln(1.21230…)
ex=1.21230…
Apply exponent rules
ex=1.21230…
If f(x)=g(x), then ln(f(x))=ln(g(x))ln(ex)=ln(1.21230…)
Apply log rule: ln(ea)=aln(ex)=xx=ln(1.21230…)
x=ln(1.21230…)
Solve ex=0.45880…:x=ln(0.45880…)
ex=0.45880…
Apply exponent rules
ex=0.45880…
If f(x)=g(x), then ln(f(x))=ln(g(x))ln(ex)=ln(0.45880…)
Apply log rule: ln(ea)=aln(ex)=xx=ln(0.45880…)
x=ln(0.45880…)
Solve ex=−0.82487…:No Solution for x∈R
ex=−0.82487…
af(x) cannot be zero or negative for x∈RNoSolutionforx∈R
Solve ex=−2.17956…:No Solution for x∈R
ex=−2.17956…
af(x) cannot be zero or negative for x∈RNoSolutionforx∈R
x=ln(1.21230…),x=ln(0.45880…)
x=ln(1.21230…),x=ln(0.45880…)

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

5sqrt(3)tan(x)+3=8sqrt(3)tan(x)cos^2(x)=-0.5cos(x)=(1.5)/(4.272)pi/(12)=arcsin(x/2)6sin^2(x)=0

Frequently Asked Questions (FAQ)

  • What is the general solution for 6cosh^2(x)+4sinh(x)=7 ?

    The general solution for 6cosh^2(x)+4sinh(x)=7 is x=ln(1.21230…),x=ln(0.45880…)
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024