Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

sqrt(3)cos(3x)+1=0

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

3​cos(3x)+1=0

Solution

x=32.18627…​+32πn​,x=−32.18627…​+32πn​
+1
Degrees
x=41.75479…∘+120∘n,x=−41.75479…∘+120∘n
Solution steps
3​cos(3x)+1=0
Move 1to the right side
3​cos(3x)+1=0
Subtract 1 from both sides3​cos(3x)+1−1=0−1
Simplify3​cos(3x)=−1
3​cos(3x)=−1
Divide both sides by 3​
3​cos(3x)=−1
Divide both sides by 3​3​3​cos(3x)​=3​−1​
Simplify
3​3​cos(3x)​=3​−1​
Simplify 3​3​cos(3x)​:cos(3x)
3​3​cos(3x)​
Cancel the common factor: 3​=cos(3x)
Simplify 3​−1​:−33​​
3​−1​
Apply the fraction rule: b−a​=−ba​=−3​1​
Rationalize −3​1​:−33​​
−3​1​
Multiply by the conjugate 3​3​​=−3​3​1⋅3​​
1⋅3​=3​
3​3​=3
3​3​
Apply radical rule: a​a​=a3​3​=3=3
=−33​​
=−33​​
cos(3x)=−33​​
cos(3x)=−33​​
cos(3x)=−33​​
Apply trig inverse properties
cos(3x)=−33​​
General solutions for cos(3x)=−33​​cos(x)=−a⇒x=arccos(−a)+2πn,x=−arccos(−a)+2πn3x=arccos(−33​​)+2πn,3x=−arccos(−33​​)+2πn
3x=arccos(−33​​)+2πn,3x=−arccos(−33​​)+2πn
Solve 3x=arccos(−33​​)+2πn:x=3arccos(−33​​)​+32πn​
3x=arccos(−33​​)+2πn
Simplify arccos(−33​​)+2πn:arccos(−3​1​)+2πn
arccos(−33​​)+2πn
33​​=3​1​
33​​
Apply radical rule: 3​=321​=3321​​
Apply exponent rule: xbxa​=xb−a1​31321​​=31−21​1​=31−21​1​
Subtract the numbers: 1−21​=21​=321​1​
Apply radical rule: 321​=3​=3​1​
=arccos(−3​1​)+2πn
3x=arccos(−3​1​)+2πn
Divide both sides by 3
3x=arccos(−3​1​)+2πn
Divide both sides by 333x​=3arccos(−3​1​)​+32πn​
Simplify
33x​=3arccos(−3​1​)​+32πn​
Simplify 33x​:x
33x​
Divide the numbers: 33​=1=x
Simplify 3arccos(−3​1​)​+32πn​:3arccos(−33​​)​+32πn​
3arccos(−3​1​)​+32πn​
arccos(−3​1​)=arccos(−33​​)
arccos(−3​1​)
=arccos(−33​​)
=3arccos(−33​​)​+32πn​
x=3arccos(−33​​)​+32πn​
x=3arccos(−33​​)​+32πn​
x=3arccos(−33​​)​+32πn​
Solve 3x=−arccos(−33​​)+2πn:x=−3arccos(−33​​)​+32πn​
3x=−arccos(−33​​)+2πn
Simplify −arccos(−33​​)+2πn:−arccos(−3​1​)+2πn
−arccos(−33​​)+2πn
33​​=3​1​
33​​
Apply radical rule: 3​=321​=3321​​
Apply exponent rule: xbxa​=xb−a1​31321​​=31−21​1​=31−21​1​
Subtract the numbers: 1−21​=21​=321​1​
Apply radical rule: 321​=3​=3​1​
=−arccos(−3​1​)+2πn
3x=−arccos(−3​1​)+2πn
Divide both sides by 3
3x=−arccos(−3​1​)+2πn
Divide both sides by 333x​=−3arccos(−3​1​)​+32πn​
Simplify
33x​=−3arccos(−3​1​)​+32πn​
Simplify 33x​:x
33x​
Divide the numbers: 33​=1=x
Simplify −3arccos(−3​1​)​+32πn​:−3arccos(−33​​)​+32πn​
−3arccos(−3​1​)​+32πn​
arccos(−3​1​)=arccos(−33​​)
arccos(−3​1​)
=arccos(−33​​)
=−3arccos(−33​​)​+32πn​
x=−3arccos(−33​​)​+32πn​
x=−3arccos(−33​​)​+32πn​
x=−3arccos(−33​​)​+32πn​
x=3arccos(−33​​)​+32πn​,x=−3arccos(−33​​)​+32πn​
Show solutions in decimal formx=32.18627…​+32πn​,x=−32.18627…​+32πn​

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

sin(2A)=sin(A)csc(θ)= 3/2(cos(θ))/(sin(θ))=-1cos(B)= 12/13sin(θ)=sqrt(2/9),θ,3r(θ,d)d,tan(2θ)

Frequently Asked Questions (FAQ)

  • What is the general solution for sqrt(3)cos(3x)+1=0 ?

    The general solution for sqrt(3)cos(3x)+1=0 is x=(2.18627…)/3+(2pin)/3 ,x=-(2.18627…)/3+(2pin)/3
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024