Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

3(cos^2(a))/(sin^2(a))=(cot(a))^2

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

3sin2(a)cos2(a)​=(cot(a))2

Solution

a=2π​+2πn,a=23π​+2πn
+1
Degrees
a=90∘+360∘n,a=270∘+360∘n
Solution steps
3⋅sin2(a)cos2(a)​=(cot(a))2
Subtract (cot(a))2 from both sidessin2(a)3cos2(a)​−cot2(a)=0
Simplify sin2(a)3cos2(a)​−cot2(a):sin2(a)3cos2(a)−cot2(a)sin2(a)​
sin2(a)3cos2(a)​−cot2(a)
Convert element to fraction: cot2(a)=sin2(a)cot2(a)sin2(a)​=sin2(a)3cos2(a)​−sin2(a)cot2(a)sin2(a)​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=sin2(a)3cos2(a)−cot2(a)sin2(a)​
sin2(a)3cos2(a)−cot2(a)sin2(a)​=0
g(x)f(x)​=0⇒f(x)=03cos2(a)−cot2(a)sin2(a)=0
Factor 3cos2(a)−cot2(a)sin2(a):(3​cos(a)+cot(a)sin(a))(3​cos(a)−cot(a)sin(a))
3cos2(a)−cot2(a)sin2(a)
Rewrite cot2(a)sin2(a) as (cot(a)sin(a))2
cot2(a)sin2(a)
Apply exponent rule: ambm=(ab)mcot2(a)sin2(a)=(cot(a)sin(a))2=(cot(a)sin(a))2
=3cos2(a)−(cot(a)sin(a))2
Rewrite 3cos2(a)−(cot(a)sin(a))2 as (3​cos(a))2−(cot(a)sin(a))2
3cos2(a)−(cot(a)sin(a))2
Apply radical rule: a=(a​)23=(3​)2=(3​)2cos2(a)−(cot(a)sin(a))2
Apply exponent rule: ambm=(ab)m(3​)2cos2(a)=(3​cos(a))2=(3​cos(a))2−(cot(a)sin(a))2
=(3​cos(a))2−(cot(a)sin(a))2
Apply Difference of Two Squares Formula: x2−y2=(x+y)(x−y)(3​cos(a))2−(cot(a)sin(a))2=(3​cos(a)+cot(a)sin(a))(3​cos(a)−cot(a)sin(a))=(3​cos(a)+cot(a)sin(a))(3​cos(a)−cot(a)sin(a))
(3​cos(a)+cot(a)sin(a))(3​cos(a)−cot(a)sin(a))=0
Solving each part separately3​cos(a)+cot(a)sin(a)=0or3​cos(a)−cot(a)sin(a)=0
3​cos(a)+cot(a)sin(a)=0:a=2π​+2πn,a=23π​+2πn
3​cos(a)+cot(a)sin(a)=0
Rewrite using trig identities
cos(a)3​+cot(a)sin(a)
Use the basic trigonometric identity: cot(x)=sin(x)cos(x)​=cos(a)3​+sin(a)cos(a)​sin(a)
sin(a)cos(a)​sin(a)=cos(a)
sin(a)cos(a)​sin(a)
Multiply fractions: a⋅cb​=ca⋅b​=sin(a)cos(a)sin(a)​
Cancel the common factor: sin(a)=cos(a)
=3​cos(a)+cos(a)
cos(a)+cos(a)3​=0
Solve by substitution
cos(a)+cos(a)3​=0
Let: cos(a)=uu+u3​=0
u+u3​=0:u=0
u+u3​=0
Factor u+u3​:(1+3​)u
u+u3​
Factor out common term u=u(1+3​)
(1+3​)u=0
Divide both sides by 1+3​
(1+3​)u=0
Divide both sides by 1+3​1+3​(1+3​)u​=1+3​0​
Simplifyu=0
u=0
Substitute back u=cos(a)cos(a)=0
cos(a)=0
cos(a)=0:a=2π​+2πn,a=23π​+2πn
cos(a)=0
General solutions for cos(a)=0
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
a=2π​+2πn,a=23π​+2πn
a=2π​+2πn,a=23π​+2πn
Combine all the solutionsa=2π​+2πn,a=23π​+2πn
3​cos(a)−cot(a)sin(a)=0:a=2π​+2πn,a=23π​+2πn
3​cos(a)−cot(a)sin(a)=0
Rewrite using trig identities
cos(a)3​−cot(a)sin(a)
Use the basic trigonometric identity: cot(x)=sin(x)cos(x)​=cos(a)3​−sin(a)cos(a)​sin(a)
sin(a)cos(a)​sin(a)=cos(a)
sin(a)cos(a)​sin(a)
Multiply fractions: a⋅cb​=ca⋅b​=sin(a)cos(a)sin(a)​
Cancel the common factor: sin(a)=cos(a)
=3​cos(a)−cos(a)
−cos(a)+cos(a)3​=0
Solve by substitution
−cos(a)+cos(a)3​=0
Let: cos(a)=u−u+u3​=0
−u+u3​=0:u=0
−u+u3​=0
Factor −u+u3​:(−1+3​)u
−u+u3​
Factor out common term u=u(−1+3​)
(−1+3​)u=0
Divide both sides by −1+3​
(−1+3​)u=0
Divide both sides by −1+3​−1+3​(−1+3​)u​=−1+3​0​
Simplifyu=0
u=0
Substitute back u=cos(a)cos(a)=0
cos(a)=0
cos(a)=0:a=2π​+2πn,a=23π​+2πn
cos(a)=0
General solutions for cos(a)=0
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
a=2π​+2πn,a=23π​+2πn
a=2π​+2πn,a=23π​+2πn
Combine all the solutionsa=2π​+2πn,a=23π​+2πn
Combine all the solutionsa=2π​+2πn,a=23π​+2πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

cos(x)=(-2)/(sqrt(2))tan(x)=-0.22solvefor θ,1+cos(θ)=3cos(θ)3sin(x)-4cos(x)=0sin(θ)= 1/4 ,0<θ<90

Frequently Asked Questions (FAQ)

  • What is the general solution for 3(cos^2(a))/(sin^2(a))=(cot(a))^2 ?

    The general solution for 3(cos^2(a))/(sin^2(a))=(cot(a))^2 is a= pi/2+2pin,a=(3pi)/2+2pin
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024