Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

tan(θ)=(2sqrt(3))/3 sin(θ),0<= θ<= 2pi

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

tan(θ)=323​​sin(θ),0≤θ≤2π

Solution

θ=0,θ=π,θ=2π,θ=6π​,θ=611π​
+1
Degrees
θ=0∘,θ=180∘,θ=360∘,θ=30∘,θ=330∘
Solution steps
tan(θ)=323​​sin(θ),0≤θ≤2π
Subtract 323​​sin(θ) from both sidestan(θ)−3​2sin(θ)​=0
Simplify tan(θ)−3​2sin(θ)​:3​3​tan(θ)−2sin(θ)​
tan(θ)−3​2sin(θ)​
Convert element to fraction: tan(θ)=3​tan(θ)3​​=3​tan(θ)3​​−3​2sin(θ)​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=3​tan(θ)3​−2sin(θ)​
3​3​tan(θ)−2sin(θ)​=0
g(x)f(x)​=0⇒f(x)=03​tan(θ)−2sin(θ)=0
Express with sin, cos
−2sin(θ)+3​tan(θ)
Use the basic trigonometric identity: tan(x)=cos(x)sin(x)​=−2sin(θ)+3​cos(θ)sin(θ)​
Simplify −2sin(θ)+3​cos(θ)sin(θ)​:cos(θ)−2sin(θ)cos(θ)+3​sin(θ)​
−2sin(θ)+3​cos(θ)sin(θ)​
Multiply 3​cos(θ)sin(θ)​:cos(θ)3​sin(θ)​
3​cos(θ)sin(θ)​
Multiply fractions: a⋅cb​=ca⋅b​=cos(θ)sin(θ)3​​
=−2sin(θ)+cos(θ)3​sin(θ)​
Convert element to fraction: 2sin(θ)=cos(θ)2sin(θ)cos(θ)​=−cos(θ)2sin(θ)cos(θ)​+cos(θ)sin(θ)3​​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=cos(θ)−2sin(θ)cos(θ)+sin(θ)3​​
=cos(θ)−2sin(θ)cos(θ)+3​sin(θ)​
cos(θ)sin(θ)3​−2cos(θ)sin(θ)​=0
g(x)f(x)​=0⇒f(x)=0sin(θ)3​−2cos(θ)sin(θ)=0
Factor sin(θ)3​−2cos(θ)sin(θ):sin(θ)(3​−2cos(θ))
sin(θ)3​−2cos(θ)sin(θ)
Factor out common term sin(θ)=sin(θ)(3​−2cos(θ))
sin(θ)(3​−2cos(θ))=0
Solving each part separatelysin(θ)=0or3​−2cos(θ)=0
sin(θ)=0,0≤θ≤2π:θ=0,θ=π,θ=2π
sin(θ)=0,0≤θ≤2π
General solutions for sin(θ)=0
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
θ=0+2πn,θ=π+2πn
θ=0+2πn,θ=π+2πn
Solve θ=0+2πn:θ=2πn
θ=0+2πn
0+2πn=2πnθ=2πn
θ=2πn,θ=π+2πn
Solutions for the range 0≤θ≤2πθ=0,θ=π,θ=2π
3​−2cos(θ)=0,0≤θ≤2π:θ=6π​,θ=611π​
3​−2cos(θ)=0,0≤θ≤2π
Move 3​to the right side
3​−2cos(θ)=0
Subtract 3​ from both sides3​−2cos(θ)−3​=0−3​
Simplify−2cos(θ)=−3​
−2cos(θ)=−3​
Divide both sides by −2
−2cos(θ)=−3​
Divide both sides by −2−2−2cos(θ)​=−2−3​​
Simplifycos(θ)=23​​
cos(θ)=23​​
General solutions for cos(θ)=23​​
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
θ=6π​+2πn,θ=611π​+2πn
θ=6π​+2πn,θ=611π​+2πn
Solutions for the range 0≤θ≤2πθ=6π​,θ=611π​
Combine all the solutionsθ=0,θ=π,θ=2π,θ=6π​,θ=611π​

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

solvefor x,cos(x+y)=-cos(x)4+2tan^2(x)=5tan^2(x)+3solvefor θ,sec(θ)=22cos(4θ)=01032/3145 sin(4x)+2196/3145 cos(4x)=0
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024