Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

arccos(x)+arccos(2x)=arccos(1/2)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

arccos(x)+arccos(2x)=arccos(21​)

Solution

x=21​
Solution steps
arccos(x)+arccos(2x)=arccos(21​)
a=b⇒cos(a)=cos(b)cos(arccos(x)+arccos(2x))=cos(arccos(21​))
Use the following identity: cos(s+t)=cos(s)cos(t)−sin(s)sin(t)cos(arccos(x))cos(arccos(2x))−sin(arccos(x))sin(arccos(2x))=cos(arccos(21​))
Use the following identity: cos(arccos(x))=x
Use the following identity: cos(arccos(x))=x
Use the following identity: sin(arccos(x))=1−x2​
Use the following identity: sin(arccos(x))=1−x2​
x⋅2x−1−x2​1−(2x)2​=21​
Solve x2x−1−x2​1−(2x)2​=21​:x=21​,x=−21​
x⋅2x−1−x2​1−(2x)2​=21​
Multiply both sides by 2x⋅2x⋅2−1−x2​1−(2x)2​⋅2=21​⋅2
Simplify4x2−21−x2​1−(2x)2​=1
Remove square roots
4x2−21−x2​1−(2x)2​=1
Subtract 4x2 from both sides4x2−21−x2​1−(2x)2​−4x2=1−4x2
Simplify−21−x2​1−(2x)2​=1−4x2
Square both sides:4−20x2+16x4=1−8x2+16x4
4x2−21−x2​1−(2x)2​=1
(−21−x2​1−(2x)2​)2=(1−4x2)2
Expand (−21−x2​1−(2x)2​)2:4−20x2+16x4
(−21−x2​1−(2x)2​)2
Apply exponent rule: (−a)n=an,if n is even(−21−x2​1−(2x)2​)2=(21−x2​1−(2x)2​)2=(21−x2​1−(2x)2​)2
Apply exponent rule: (a⋅b)n=anbn=22(1−x2​)2(1−(2x)2​)2
(1−x2​)2:1−x2
Apply radical rule: a​=a21​=((1−x2)21​)2
Apply exponent rule: (ab)c=abc=(1−x2)21​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=1−x2
=22(1−x2)(1−(2x)2​)2
(1−(2x)2​)2:1−(2x)2
Apply radical rule: a​=a21​=((1−(2x)2)21​)2
Apply exponent rule: (ab)c=abc=(1−(2x)2)21​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=1−(2x)2
=22(1−x2)(1−(2x)2)
22=4=4(1−x2)(1−(2x)2)
Expand 4(1−x2)(1−(2x)2):4−20x2+16x4
4(1−x2)(1−(2x)2)
Apply exponent rule: (a⋅b)n=anbn=4(−x2+1)(−22x2+1)
22=4=4(−x2+1)(−4x2+1)
Expand (1−x2)(1−4x2):1−5x2+4x4
(1−x2)(1−4x2)
Apply FOIL method: (a+b)(c+d)=ac+ad+bc+bda=1,b=−x2,c=1,d=−4x2=1⋅1+1⋅(−4x2)+(−x2)⋅1+(−x2)(−4x2)
Apply minus-plus rules+(−a)=−a,(−a)(−b)=ab=1⋅1−1⋅4x2−1⋅x2+4x2x2
Simplify 1⋅1−1⋅4x2−1⋅x2+4x2x2:1−5x2+4x4
1⋅1−1⋅4x2−1⋅x2+4x2x2
1⋅1=1
1⋅1
Multiply the numbers: 1⋅1=1=1
1⋅4x2=4x2
1⋅4x2
Multiply the numbers: 1⋅4=4=4x2
1⋅x2=x2
1⋅x2
Multiply: 1⋅x2=x2=x2
4x2x2=4x4
4x2x2
Apply exponent rule: ab⋅ac=ab+cx2x2=x2+2=4x2+2
Add the numbers: 2+2=4=4x4
=1−4x2−x2+4x4
Add similar elements: −4x2−x2=−5x2=1−5x2+4x4
=1−5x2+4x4
=4(1−5x2+4x4)
Expand 4(1−5x2+4x4):4−20x2+16x4
4(1−5x2+4x4)
Distribute parentheses=4⋅1+4(−5x2)+4⋅4x4
Apply minus-plus rules+(−a)=−a=4⋅1−4⋅5x2+4⋅4x4
Simplify 4⋅1−4⋅5x2+4⋅4x4:4−20x2+16x4
4⋅1−4⋅5x2+4⋅4x4
Multiply the numbers: 4⋅1=4=4−4⋅5x2+4⋅4x4
Multiply the numbers: 4⋅5=20=4−20x2+4⋅4x4
Multiply the numbers: 4⋅4=16=4−20x2+16x4
=4−20x2+16x4
=4−20x2+16x4
=4−20x2+16x4
Expand (1−4x2)2:1−8x2+16x4
(1−4x2)2
Apply Perfect Square Formula: (a−b)2=a2−2ab+b2a=1,b=4x2
=12−2⋅1⋅4x2+(4x2)2
Simplify 12−2⋅1⋅4x2+(4x2)2:1−8x2+16x4
12−2⋅1⋅4x2+(4x2)2
Apply rule 1a=112=1=1−2⋅1⋅4x2+(4x2)2
2⋅1⋅4x2=8x2
2⋅1⋅4x2
Multiply the numbers: 2⋅1⋅4=8=8x2
(4x2)2=16x4
(4x2)2
Apply exponent rule: (a⋅b)n=anbn=42(x2)2
(x2)2:x4
Apply exponent rule: (ab)c=abc=x2⋅2
Multiply the numbers: 2⋅2=4=x4
=42x4
42=16=16x4
=1−8x2+16x4
=1−8x2+16x4
4−20x2+16x4=1−8x2+16x4
4−20x2+16x4=1−8x2+16x4
4−20x2+16x4=1−8x2+16x4
Solve 4−20x2+16x4=1−8x2+16x4:x=21​,x=−21​
4−20x2+16x4=1−8x2+16x4
Move 4to the right side
4−20x2+16x4=1−8x2+16x4
Subtract 4 from both sides4−20x2+16x4−4=1−8x2+16x4−4
Simplify−20x2+16x4=16x4−8x2−3
−20x2+16x4=16x4−8x2−3
Move 8x2to the left side
−20x2+16x4=16x4−8x2−3
Add 8x2 to both sides−20x2+16x4+8x2=16x4−8x2−3+8x2
Simplify16x4−12x2=16x4−3
16x4−12x2=16x4−3
Move 16x4to the left side
16x4−12x2=16x4−3
Subtract 16x4 from both sides16x4−12x2−16x4=16x4−3−16x4
Simplify−12x2=−3
−12x2=−3
Divide both sides by −12
−12x2=−3
Divide both sides by −12−12−12x2​=−12−3​
Simplify
−12−12x2​=−12−3​
Simplify −12−12x2​:x2
−12−12x2​
Apply the fraction rule: −b−a​=ba​=1212x2​
Divide the numbers: 1212​=1=x2
Simplify −12−3​:41​
−12−3​
Apply the fraction rule: −b−a​=ba​=123​
Cancel the common factor: 3=41​
x2=41​
x2=41​
x2=41​
For x2=f(a) the solutions are x=f(a)​,−f(a)​
x=41​​,x=−41​​
41​​=21​
41​​
Apply radical rule: ba​​=b​a​​,a≥0,b≥0=4​1​​
Apply radical rule: 1​=11​=1=4​1​
4​=2
4​
Factor the number: 4=22=22​
Apply radical rule: a2​=a,a≥022​=2=2
=21​
−41​​=−21​
−41​​
Apply radical rule: ba​​=b​a​​,a≥0,b≥0=−4​1​​
Apply radical rule: 1​=11​=1=−4​1​
4​=2
4​
Factor the number: 4=22=22​
Apply radical rule: a2​=a,a≥022​=2=2
=−21​
x=21​,x=−21​
x=21​,x=−21​
Verify Solutions:x=21​True,x=−21​True
Check the solutions by plugging them into x2x−1−x2​1−(2x)2​=21​
Remove the ones that don't agree with the equation.
Plug in x=21​:True
(21​)⋅2(21​)−1−(21​)2​1−(2(21​))2​=21​
(21​)⋅2(21​)−1−(21​)2​1−(2(21​))2​=21​
(21​)⋅2(21​)−1−(21​)2​1−(2(21​))2​
Remove parentheses: (a)=a=21​⋅2⋅21​−1−(21​)2​1−(2⋅21​)2​
21​⋅2⋅21​=21​
21​⋅2⋅21​
Multiply fractions: a⋅cb​⋅ed​=c⋅ea⋅b⋅d​=2⋅21⋅1⋅2​
Cancel the common factor: 2=21⋅1​
Multiply the numbers: 1⋅1=1=21​
1−(21​)2​1−(2⋅21​)2​=0
1−(21​)2​1−(2⋅21​)2​
1−(21​)2​=23​​
1−(21​)2​
(21​)2=41​
(21​)2
Apply exponent rule: (ba​)c=bcac​=2212​
Apply rule 1a=112=1=221​
22=4=41​
=1−41​​
Join 1−41​:43​
1−41​
Convert element to fraction: 1=41⋅4​=41⋅4​−41​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=41⋅4−1​
1⋅4−1=3
1⋅4−1
Multiply the numbers: 1⋅4=4=4−1
Subtract the numbers: 4−1=3=3
=43​
=43​​
Apply radical rule: assuming a≥0,b≥0=4​3​​
4​=2
4​
Factor the number: 4=22=22​
Apply radical rule: 22​=2=2
=23​​
=23​​−(2⋅21​)2+1​
1−(2⋅21​)2​=0
1−(2⋅21​)2​
(2⋅21​)2=1
(2⋅21​)2
Multiply 2⋅21​:1
2⋅21​
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=12
Apply rule 1a=1=1
=1−1​
Subtract the numbers: 1−1=0=0​
Apply rule 0​=0=0
=0⋅23​​
Apply rule 0⋅a=0=0
=21​−0
21​−0=21​=21​
21​=21​
True
Plug in x=−21​:True
(−21​)⋅2(−21​)−1−(−21​)2​1−(2(−21​))2​=21​
(−21​)⋅2(−21​)−1−(−21​)2​1−(2(−21​))2​=21​
(−21​)⋅2(−21​)−1−(−21​)2​1−(2(−21​))2​
Remove parentheses: (−a)=−a,−(−a)=a=21​⋅2⋅21​−1−(−21​)2​1−(−2⋅21​)2​
21​⋅2⋅21​=21​
21​⋅2⋅21​
Multiply fractions: a⋅cb​⋅ed​=c⋅ea⋅b⋅d​=2⋅21⋅1⋅2​
Cancel the common factor: 2=21⋅1​
Multiply the numbers: 1⋅1=1=21​
1−(−21​)2​1−(−2⋅21​)2​=0
1−(−21​)2​1−(−2⋅21​)2​
1−(−21​)2​=23​​
1−(−21​)2​
(−21​)2=41​
(−21​)2
Apply exponent rule: (−a)n=an,if n is even(−21​)2=(21​)2=(21​)2
Apply exponent rule: (ba​)c=bcac​=2212​
Apply rule 1a=112=1=221​
22=4=41​
=1−41​​
Join 1−41​:43​
1−41​
Convert element to fraction: 1=41⋅4​=41⋅4​−41​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=41⋅4−1​
1⋅4−1=3
1⋅4−1
Multiply the numbers: 1⋅4=4=4−1
Subtract the numbers: 4−1=3=3
=43​
=43​​
Apply radical rule: assuming a≥0,b≥0=4​3​​
4​=2
4​
Factor the number: 4=22=22​
Apply radical rule: 22​=2=2
=23​​
=23​​−(−2⋅21​)2+1​
1−(−2⋅21​)2​=0
1−(−2⋅21​)2​
(−2⋅21​)2=1
(−2⋅21​)2
Multiply −2⋅21​:−1
−2⋅21​
Multiply fractions: a⋅cb​=ca⋅b​=−21⋅2​
Cancel the common factor: 2=−1
=(−1)2
Apply exponent rule: (−a)n=an,if n is even(−1)2=12=12
Apply rule 1a=1=1
=1−1​
Subtract the numbers: 1−1=0=0​
Apply rule 0​=0=0
=0⋅23​​
Apply rule 0⋅a=0=0
=21​−0
21​−0=21​=21​
21​=21​
True
The solutions arex=21​,x=−21​
x=21​,x=−21​
Verify solutions by plugging them into the original equation
Check the solutions by plugging them into arccos(x)+arccos(2x)=arccos(21​)
Remove the ones that don't agree with the equation.
Check the solution 21​:True
21​
Plug in n=121​
For arccos(x)+arccos(2x)=arccos(21​)plug inx=21​arccos(21​)+arccos(2⋅21​)=arccos(21​)
Refine1.04719…=1.04719…
⇒True
Check the solution −21​:False
−21​
Plug in n=1−21​
For arccos(x)+arccos(2x)=arccos(21​)plug inx=−21​arccos(−21​)+arccos(2(−21​))=arccos(21​)
Refine5.23598…=1.04719…
⇒False
x=21​

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

tan(θ)=(2sqrt(3))/3 sin(θ),0<= θ<= 2pisolvefor x,cos(x+y)=-cos(x)4+2tan^2(x)=5tan^2(x)+3solvefor θ,sec(θ)=22cos(4θ)=0

Frequently Asked Questions (FAQ)

  • What is the general solution for arccos(x)+arccos(2x)=arccos(1/2) ?

    The general solution for arccos(x)+arccos(2x)=arccos(1/2) is x= 1/2
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024