Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

120=23sin(pi/6 (x))+107

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

120=23sin(6π​(x))+107

Solution

x=π6⋅0.60069…​+12n,x=6−π6⋅0.60069…​+12n
+1
Degrees
x=65.73237…∘+687.54935…∘n,x=278.04230…∘+687.54935…∘n
Solution steps
120=23sin(6π​(x))+107
Switch sides23sin(6π​x)+107=120
Move 107to the right side
23sin(6π​x)+107=120
Subtract 107 from both sides23sin(6π​x)+107−107=120−107
Simplify23sin(6π​x)=13
23sin(6π​x)=13
Divide both sides by 23
23sin(6π​x)=13
Divide both sides by 232323sin(6π​x)​=2313​
Simplifysin(6π​x)=2313​
sin(6π​x)=2313​
Apply trig inverse properties
sin(6π​x)=2313​
General solutions for sin(6π​x)=2313​sin(x)=a⇒x=arcsin(a)+2πn,x=π−arcsin(a)+2πn6π​x=arcsin(2313​)+2πn,6π​x=π−arcsin(2313​)+2πn
6π​x=arcsin(2313​)+2πn,6π​x=π−arcsin(2313​)+2πn
Solve 6π​x=arcsin(2313​)+2πn:x=π6arcsin(2313​)​+12n
6π​x=arcsin(2313​)+2πn
Multiply both sides by 6
6π​x=arcsin(2313​)+2πn
Multiply both sides by 66⋅6π​x=6arcsin(2313​)+6⋅2πn
Simplify
6⋅6π​x=6arcsin(2313​)+6⋅2πn
Simplify 6⋅6π​x:πx
6⋅6π​x
Multiply fractions: a⋅cb​=ca⋅b​=66π​x
Cancel the common factor: 6=xπ
Simplify 6arcsin(2313​)+6⋅2πn:6arcsin(2313​)+12πn
6arcsin(2313​)+6⋅2πn
Multiply the numbers: 6⋅2=12=6arcsin(2313​)+12πn
πx=6arcsin(2313​)+12πn
πx=6arcsin(2313​)+12πn
πx=6arcsin(2313​)+12πn
Divide both sides by π
πx=6arcsin(2313​)+12πn
Divide both sides by πππx​=π6arcsin(2313​)​+π12πn​
Simplifyx=π6arcsin(2313​)​+12n
x=π6arcsin(2313​)​+12n
Solve 6π​x=π−arcsin(2313​)+2πn:x=6−π6arcsin(2313​)​+12n
6π​x=π−arcsin(2313​)+2πn
Multiply both sides by 6
6π​x=π−arcsin(2313​)+2πn
Multiply both sides by 66⋅6π​x=6π−6arcsin(2313​)+6⋅2πn
Simplify
6⋅6π​x=6π−6arcsin(2313​)+6⋅2πn
Simplify 6⋅6π​x:πx
6⋅6π​x
Multiply fractions: a⋅cb​=ca⋅b​=66π​x
Cancel the common factor: 6=xπ
Simplify 6π−6arcsin(2313​)+6⋅2πn:6π−6arcsin(2313​)+12πn
6π−6arcsin(2313​)+6⋅2πn
Multiply the numbers: 6⋅2=12=6π−6arcsin(2313​)+12πn
πx=6π−6arcsin(2313​)+12πn
πx=6π−6arcsin(2313​)+12πn
πx=6π−6arcsin(2313​)+12πn
Divide both sides by π
πx=6π−6arcsin(2313​)+12πn
Divide both sides by πππx​=π6π​−π6arcsin(2313​)​+π12πn​
Simplify
ππx​=π6π​−π6arcsin(2313​)​+π12πn​
Simplify ππx​:x
ππx​
Cancel the common factor: π=x
Simplify π6π​−π6arcsin(2313​)​+π12πn​:6−π6arcsin(2313​)​+12n
π6π​−π6arcsin(2313​)​+π12πn​
Cancel π6π​:6
π6π​
Cancel the common factor: π=6
=6−π6arcsin(2313​)​+π12πn​
Cancel π12πn​:12n
π12πn​
Cancel the common factor: π=12n
=6−π6arcsin(2313​)​+12n
x=6−π6arcsin(2313​)​+12n
x=6−π6arcsin(2313​)​+12n
x=6−π6arcsin(2313​)​+12n
x=π6arcsin(2313​)​+12n,x=6−π6arcsin(2313​)​+12n
Show solutions in decimal formx=π6⋅0.60069…​+12n,x=6−π6⋅0.60069…​+12n

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

4sin(3θ)=2cos(x)=cos(3x)+2sin(2x)csc(x)(2sin(x)-sqrt(2))=0(700)/(sin(90))=(236.3277)/(sin(θ))cos(x)+cos(2x)=-0.75

Frequently Asked Questions (FAQ)

  • What is the general solution for 120=23sin(pi/6 (x))+107 ?

    The general solution for 120=23sin(pi/6 (x))+107 is x=(6*0.60069…)/pi+12n,x=6-(6*0.60069…)/pi+12n
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024