Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

cos(θ)cos(3θ)-1=0

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

cos(θ)cos(3θ)−1=0

Solution

θ=2πn,θ=π+2πn
+1
Degrees
θ=0∘+360∘n,θ=180∘+360∘n
Solution steps
cos(θ)cos(3θ)−1=0
Rewrite using trig identities
−1+cos(3θ)cos(θ)
cos(3θ)=4cos3(θ)−3cos(θ)
cos(3θ)
Rewrite using trig identities
cos(3θ)
Rewrite as=cos(2θ+θ)
Use the Angle Sum identity: cos(s+t)=cos(s)cos(t)−sin(s)sin(t)=cos(2θ)cos(θ)−sin(2θ)sin(θ)
Use the Double Angle identity: sin(2θ)=2sin(θ)cos(θ)=cos(2θ)cos(θ)−2sin(θ)cos(θ)sin(θ)
Simplify cos(2θ)cos(θ)−2sin(θ)cos(θ)sin(θ):cos(θ)cos(2θ)−2sin2(θ)cos(θ)
cos(2θ)cos(θ)−2sin(θ)cos(θ)sin(θ)
2sin(θ)cos(θ)sin(θ)=2sin2(θ)cos(θ)
2sin(θ)cos(θ)sin(θ)
Apply exponent rule: ab⋅ac=ab+csin(θ)sin(θ)=sin1+1(θ)=2cos(θ)sin1+1(θ)
Add the numbers: 1+1=2=2cos(θ)sin2(θ)
=cos(θ)cos(2θ)−2sin2(θ)cos(θ)
=cos(θ)cos(2θ)−2sin2(θ)cos(θ)
=cos(θ)cos(2θ)−2sin2(θ)cos(θ)
Use the Double Angle identity: cos(2θ)=2cos2(θ)−1=(2cos2(θ)−1)cos(θ)−2sin2(θ)cos(θ)
Use the Pythagorean identity: cos2(θ)+sin2(θ)=1sin2(θ)=1−cos2(θ)=(2cos2(θ)−1)cos(θ)−2(1−cos2(θ))cos(θ)
Expand (2cos2(θ)−1)cos(θ)−2(1−cos2(θ))cos(θ):4cos3(θ)−3cos(θ)
(2cos2(θ)−1)cos(θ)−2(1−cos2(θ))cos(θ)
=cos(θ)(2cos2(θ)−1)−2cos(θ)(1−cos2(θ))
Expand cos(θ)(2cos2(θ)−1):2cos3(θ)−cos(θ)
cos(θ)(2cos2(θ)−1)
Apply the distributive law: a(b−c)=ab−aca=cos(θ),b=2cos2(θ),c=1=cos(θ)2cos2(θ)−cos(θ)1
=2cos2(θ)cos(θ)−1cos(θ)
Simplify 2cos2(θ)cos(θ)−1⋅cos(θ):2cos3(θ)−cos(θ)
2cos2(θ)cos(θ)−1cos(θ)
2cos2(θ)cos(θ)=2cos3(θ)
2cos2(θ)cos(θ)
Apply exponent rule: ab⋅ac=ab+ccos2(θ)cos(θ)=cos2+1(θ)=2cos2+1(θ)
Add the numbers: 2+1=3=2cos3(θ)
1⋅cos(θ)=cos(θ)
1cos(θ)
Multiply: 1⋅cos(θ)=cos(θ)=cos(θ)
=2cos3(θ)−cos(θ)
=2cos3(θ)−cos(θ)
=2cos3(θ)−cos(θ)−2(1−cos2(θ))cos(θ)
Expand −2cos(θ)(1−cos2(θ)):−2cos(θ)+2cos3(θ)
−2cos(θ)(1−cos2(θ))
Apply the distributive law: a(b−c)=ab−aca=−2cos(θ),b=1,c=cos2(θ)=−2cos(θ)1−(−2cos(θ))cos2(θ)
Apply minus-plus rules−(−a)=a=−2⋅1cos(θ)+2cos2(θ)cos(θ)
Simplify −2⋅1⋅cos(θ)+2cos2(θ)cos(θ):−2cos(θ)+2cos3(θ)
−2⋅1cos(θ)+2cos2(θ)cos(θ)
2⋅1⋅cos(θ)=2cos(θ)
2⋅1cos(θ)
Multiply the numbers: 2⋅1=2=2cos(θ)
2cos2(θ)cos(θ)=2cos3(θ)
2cos2(θ)cos(θ)
Apply exponent rule: ab⋅ac=ab+ccos2(θ)cos(θ)=cos2+1(θ)=2cos2+1(θ)
Add the numbers: 2+1=3=2cos3(θ)
=−2cos(θ)+2cos3(θ)
=−2cos(θ)+2cos3(θ)
=2cos3(θ)−cos(θ)−2cos(θ)+2cos3(θ)
Simplify 2cos3(θ)−cos(θ)−2cos(θ)+2cos3(θ):4cos3(θ)−3cos(θ)
2cos3(θ)−cos(θ)−2cos(θ)+2cos3(θ)
Group like terms=2cos3(θ)+2cos3(θ)−cos(θ)−2cos(θ)
Add similar elements: 2cos3(θ)+2cos3(θ)=4cos3(θ)=4cos3(θ)−cos(θ)−2cos(θ)
Add similar elements: −cos(θ)−2cos(θ)=−3cos(θ)=4cos3(θ)−3cos(θ)
=4cos3(θ)−3cos(θ)
=4cos3(θ)−3cos(θ)
=−1+(4cos3(θ)−3cos(θ))cos(θ)
−1+(−3cos(θ)+4cos3(θ))cos(θ)=0
Solve by substitution
−1+(−3cos(θ)+4cos3(θ))cos(θ)=0
Let: cos(θ)=u−1+(−3u+4u3)u=0
−1+(−3u+4u3)u=0:u=1,u=−1,u=i21​,u=−i21​
−1+(−3u+4u3)u=0
Expand −1+(−3u+4u3)u:−1−3u2+4u4
−1+(−3u+4u3)u
=−1+u(−3u+4u3)
Expand u(−3u+4u3):−3u2+4u4
u(−3u+4u3)
Apply the distributive law: a(b+c)=ab+aca=u,b=−3u,c=4u3=u(−3u)+u⋅4u3
Apply minus-plus rules+(−a)=−a=−3uu+4u3u
Simplify −3uu+4u3u:−3u2+4u4
−3uu+4u3u
3uu=3u2
3uu
Apply exponent rule: ab⋅ac=ab+cuu=u1+1=3u1+1
Add the numbers: 1+1=2=3u2
4u3u=4u4
4u3u
Apply exponent rule: ab⋅ac=ab+cu3u=u3+1=4u3+1
Add the numbers: 3+1=4=4u4
=−3u2+4u4
=−3u2+4u4
=−1−3u2+4u4
−1−3u2+4u4=0
Write in the standard form an​xn+…+a1​x+a0​=04u4−3u2−1=0
Rewrite the equation with v=u2 and v2=u44v2−3v−1=0
Solve 4v2−3v−1=0:v=1,v=−41​
4v2−3v−1=0
Solve with the quadratic formula
4v2−3v−1=0
Quadratic Equation Formula:
For a=4,b=−3,c=−1v1,2​=2⋅4−(−3)±(−3)2−4⋅4(−1)​​
v1,2​=2⋅4−(−3)±(−3)2−4⋅4(−1)​​
(−3)2−4⋅4(−1)​=5
(−3)2−4⋅4(−1)​
Apply rule −(−a)=a=(−3)2+4⋅4⋅1​
Apply exponent rule: (−a)n=an,if n is even(−3)2=32=32+4⋅4⋅1​
Multiply the numbers: 4⋅4⋅1=16=32+16​
32=9=9+16​
Add the numbers: 9+16=25=25​
Factor the number: 25=52=52​
Apply radical rule: 52​=5=5
v1,2​=2⋅4−(−3)±5​
Separate the solutionsv1​=2⋅4−(−3)+5​,v2​=2⋅4−(−3)−5​
v=2⋅4−(−3)+5​:1
2⋅4−(−3)+5​
Apply rule −(−a)=a=2⋅43+5​
Add the numbers: 3+5=8=2⋅48​
Multiply the numbers: 2⋅4=8=88​
Apply rule aa​=1=1
v=2⋅4−(−3)−5​:−41​
2⋅4−(−3)−5​
Apply rule −(−a)=a=2⋅43−5​
Subtract the numbers: 3−5=−2=2⋅4−2​
Multiply the numbers: 2⋅4=8=8−2​
Apply the fraction rule: b−a​=−ba​=−82​
Cancel the common factor: 2=−41​
The solutions to the quadratic equation are:v=1,v=−41​
v=1,v=−41​
Substitute back v=u2,solve for u
Solve u2=1:u=1,u=−1
u2=1
For x2=f(a) the solutions are x=f(a)​,−f(a)​
u=1​,u=−1​
1​=1
1​
Apply rule 1​=1=1
−1​=−1
−1​
Apply rule 1​=1=−1
u=1,u=−1
Solve u2=−41​:u=i21​,u=−i21​
u2=−41​
For x2=f(a) the solutions are x=f(a)​,−f(a)​
u=−41​​,u=−−41​​
Simplify −41​​:i21​
−41​​
Apply radical rule: −a​=−1​a​−41​​=−1​41​​=−1​41​​
Apply imaginary number rule: −1​=i=i41​​
Apply radical rule: assuming a≥0,b≥041​​=4​1​​=i4​1​​
4​=2
4​
Factor the number: 4=22=22​
Apply radical rule: 22​=2=2
=i21​​
Apply rule 1​=1=i21​
Rewrite i21​ in standard complex form: 21​i
i21​
Multiply fractions: a⋅cb​=ca⋅b​=21i​
Multiply: 1i=i=2i​
=21​i
Simplify −−41​​:−i21​
−−41​​
Simplify −41​​:i21​​
−41​​
Apply radical rule: −a​=−1​a​−41​​=−1​41​​=−1​41​​
Apply imaginary number rule: −1​=i=i41​​
Apply radical rule: assuming a≥0,b≥041​​=4​1​​=i4​1​​
4​=2
4​
Factor the number: 4=22=22​
Apply radical rule: 22​=2=2
=i21​​
=−i21​​
Apply rule 1​=1=−21​i
u=i21​,u=−i21​
The solutions are
u=1,u=−1,u=i21​,u=−i21​
Substitute back u=cos(θ)cos(θ)=1,cos(θ)=−1,cos(θ)=i21​,cos(θ)=−i21​
cos(θ)=1,cos(θ)=−1,cos(θ)=i21​,cos(θ)=−i21​
cos(θ)=1:θ=2πn
cos(θ)=1
General solutions for cos(θ)=1
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
θ=0+2πn
θ=0+2πn
Solve θ=0+2πn:θ=2πn
θ=0+2πn
0+2πn=2πnθ=2πn
θ=2πn
cos(θ)=−1:θ=π+2πn
cos(θ)=−1
General solutions for cos(θ)=−1
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
θ=π+2πn
θ=π+2πn
cos(θ)=i21​:No Solution
cos(θ)=i21​
NoSolution
cos(θ)=−i21​:No Solution
cos(θ)=−i21​
NoSolution
Combine all the solutionsθ=2πn,θ=π+2πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

2tan(θ)sin(θ)-tan(θ)=0sin(4x+pi/4)=1cos^2(x)-cos(x)=0,(0,2pi)csc(42)=sec(x)solvefor x,0=cos(x)+1+sin(x)

Frequently Asked Questions (FAQ)

  • What is the general solution for cos(θ)cos(3θ)-1=0 ?

    The general solution for cos(θ)cos(3θ)-1=0 is θ=2pin,θ=pi+2pin
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024