Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

4tan^2(x)=-sqrt(3)tan(x)+tan^2(x)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

4tan2(x)=−3​tan(x)+tan2(x)

Solution

x=65π​+πn,x=πn
+1
Degrees
x=150∘+180∘n,x=0∘+180∘n
Solution steps
4tan2(x)=−3​tan(x)+tan2(x)
Solve by substitution
4tan2(x)=−3​tan(x)+tan2(x)
Let: tan(x)=u4u2=−3​u+u2
4u2=−3​u+u2:u=−33​​,u=0
4u2=−3​u+u2
Switch sides−3​u+u2=4u2
Move 4u2to the left side
−3​u+u2=4u2
Subtract 4u2 from both sides−3​u+u2−4u2=4u2−4u2
Simplify−3​u−3u2=0
−3​u−3u2=0
Write in the standard form ax2+bx+c=0−3u2−3​u=0
Solve with the quadratic formula
−3u2−3​u=0
Quadratic Equation Formula:
For a=−3,b=−3​,c=0u1,2​=2(−3)−(−3​)±(−3​)2−4(−3)⋅0​​
u1,2​=2(−3)−(−3​)±(−3​)2−4(−3)⋅0​​
(−3​)2−4(−3)⋅0​=3​
(−3​)2−4(−3)⋅0​
Apply rule −(−a)=a=(−3​)2+4⋅3⋅0​
(−3​)2=3
(−3​)2
Apply exponent rule: (−a)n=an,if n is even(−3​)2=(3​)2=(3​)2
Apply radical rule: a​=a21​=(321​)2
Apply exponent rule: (ab)c=abc=321​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=3
4⋅3⋅0=0
4⋅3⋅0
Apply rule 0⋅a=0=0
=3+0​
Add the numbers: 3+0=3=3​
u1,2​=2(−3)−(−3​)±3​​
Separate the solutionsu1​=2(−3)−(−3​)+3​​,u2​=2(−3)−(−3​)−3​​
u=2(−3)−(−3​)+3​​:−33​​
2(−3)−(−3​)+3​​
Remove parentheses: (−a)=−a,−(−a)=a=−2⋅33​+3​​
Add similar elements: 3​+3​=23​=−2⋅323​​
Multiply the numbers: 2⋅3=6=−623​​
Apply the fraction rule: −ba​=−ba​=−623​​
Cancel the common factor: 2=−33​​
u=2(−3)−(−3​)−3​​:0
2(−3)−(−3​)−3​​
Remove parentheses: (−a)=−a,−(−a)=a=−2⋅33​−3​​
Add similar elements: 3​−3​=0=−2⋅30​
Multiply the numbers: 2⋅3=6=−60​
Apply the fraction rule: −ba​=−ba​=−60​
Apply rule a0​=0,a=0=−0
=0
The solutions to the quadratic equation are:u=−33​​,u=0
Substitute back u=tan(x)tan(x)=−33​​,tan(x)=0
tan(x)=−33​​,tan(x)=0
tan(x)=−33​​:x=65π​+πn
tan(x)=−33​​
General solutions for tan(x)=−33​​
tan(x) periodicity table with πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​tan(x)033​​13​±∞−3​−1−33​​​​
x=65π​+πn
x=65π​+πn
tan(x)=0:x=πn
tan(x)=0
General solutions for tan(x)=0
tan(x) periodicity table with πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​tan(x)033​​13​±∞−3​−1−33​​​​
x=0+πn
x=0+πn
Solve x=0+πn:x=πn
x=0+πn
0+πn=πnx=πn
x=πn
Combine all the solutionsx=65π​+πn,x=πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

1/2 = 1/2*cos(4.2t+pi/6)120=sqrt(83^2+75^2-2*83*75*cos(x))cos(u)= 7/25sin(x)+cos(x)=1,0<= x<2pisolvefor x,cos^2(x+y)=sin^2(x+y)

Frequently Asked Questions (FAQ)

  • What is the general solution for 4tan^2(x)=-sqrt(3)tan(x)+tan^2(x) ?

    The general solution for 4tan^2(x)=-sqrt(3)tan(x)+tan^2(x) is x=(5pi)/6+pin,x=pin
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024