Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

120=sqrt(83^2+75^2-2*83*75*cos(x))

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

120=832+752−2⋅83⋅75⋅cos(x)​

Solution

x=1.72286…+2πn,x=−1.72286…+2πn
+1
Degrees
x=98.71304…∘+360∘n,x=−98.71304…∘+360∘n
Solution steps
120=832+752−2⋅83⋅75cos(x)​
Switch sides832+752−2⋅83⋅75cos(x)​=120
Square both sides:−12450cos(x)+12514=14400
832+752−2⋅83⋅75cos(x)​=120
(832+752−2⋅83⋅75cos(x)​)2=1202
Expand (832+752−2⋅83⋅75cos(x)​)2:−12450cos(x)+12514
(832+752−2⋅83⋅75cos(x)​)2
Apply radical rule: a​=a21​=((832+752−2⋅83⋅75cos(x))21​)2
Apply exponent rule: (ab)c=abc=(832+752−2⋅83⋅75cos(x))21​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=832+752−2⋅83⋅75cos(x)
Refine=−12450cos(x)+12514
Expand 1202:14400
1202
1202=14400=14400
−12450cos(x)+12514=14400
−12450cos(x)+12514=14400
Solve −12450cos(x)+12514=14400:cos(x)=−6225943​
−12450cos(x)+12514=14400
Move 12514to the right side
−12450cos(x)+12514=14400
Subtract 12514 from both sides−12450cos(x)+12514−12514=14400−12514
Simplify−12450cos(x)=1886
−12450cos(x)=1886
Divide both sides by −12450
−12450cos(x)=1886
Divide both sides by −12450−12450−12450cos(x)​=−124501886​
Simplify
−12450−12450cos(x)​=−124501886​
Simplify −12450−12450cos(x)​:cos(x)
−12450−12450cos(x)​
Apply the fraction rule: −b−a​=ba​=1245012450cos(x)​
Divide the numbers: 1245012450​=1=cos(x)
Simplify −124501886​:−6225943​
−124501886​
Apply the fraction rule: −ba​=−ba​=−124501886​
Cancel the common factor: 2=−6225943​
cos(x)=−6225943​
cos(x)=−6225943​
cos(x)=−6225943​
cos(x)=−6225943​
Verify Solutions:cos(x)=−6225943​True
Check the solutions by plugging them into 832+752−28375cos(x)​=120
Remove the ones that don't agree with the equation.
Plug in cos(x)=−6225943​:True
832+752−2⋅83⋅75(−6225943​)​=120
832+752−2⋅83⋅75(−6225943​)​=120
832+752−2⋅83⋅75(−6225943​)​
Apply rule −(−a)=a=832+752+2⋅83⋅75⋅6225943​​
2⋅83⋅75⋅6225943​=1886
2⋅83⋅75⋅6225943​
Multiply fractions: a⋅cb​=ca⋅b​=6225943⋅2⋅83⋅75​
Multiply the numbers: 943⋅2⋅83⋅75=11740350=622511740350​
Divide the numbers: 622511740350​=1886=1886
=832+752+1886​
832=6889=6889+752+1886​
752=5625=6889+5625+1886​
Add the numbers: 6889+5625+1886=14400=14400​
Factor the number: 14400=1202=1202​
Apply radical rule: 1202​=120=120
120=120
True
The solution iscos(x)=−6225943​
Apply trig inverse properties
cos(x)=−6225943​
General solutions for cos(x)=−6225943​cos(x)=−a⇒x=arccos(−a)+2πn,x=−arccos(−a)+2πnx=arccos(−6225943​)+2πn,x=−arccos(−6225943​)+2πn
x=arccos(−6225943​)+2πn,x=−arccos(−6225943​)+2πn
Show solutions in decimal formx=1.72286…+2πn,x=−1.72286…+2πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

cos(u)= 7/25sin(x)+cos(x)=1,0<= x<2pisolvefor x,cos^2(x+y)=sin^2(x+y)cot^2(x)+3cot(x)+2=cot(x)+1a^2=b^2+c^2-2bc*cos(x)

Frequently Asked Questions (FAQ)

  • What is the general solution for 120=sqrt(83^2+75^2-2*83*75*cos(x)) ?

    The general solution for 120=sqrt(83^2+75^2-2*83*75*cos(x)) is x=1.72286…+2pin,x=-1.72286…+2pin
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024