Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

cos(7x-30)sec(x)=1

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

cos(7x−30)sec(x)=1

Solution

x=32πn​+5,x=3π+2πn​+5,x=2πn​+415​,x=4π​+415​+2πn​
+1
Degrees
x=286.47889…∘+120∘n,x=346.47889…∘+120∘n,x=214.85917…∘+90∘n,x=259.85917…∘+90∘n
Solution steps
cos(7x−30)sec(x)=1
Subtract 1 from both sidescos(7x−30)sec(x)−1=0
Express with sin, cos
−1+cos(−30+7x)sec(x)
Use the basic trigonometric identity: sec(x)=cos(x)1​=−1+cos(−30+7x)cos(x)1​
Simplify −1+cos(−30+7x)cos(x)1​:cos(x)−cos(x)+cos(−30+7x)​
−1+cos(−30+7x)cos(x)1​
cos(−30+7x)cos(x)1​=cos(x)cos(−30+7x)​
cos(−30+7x)cos(x)1​
Multiply fractions: a⋅cb​=ca⋅b​=cos(x)1⋅cos(−30+7x)​
Multiply: 1⋅cos(−30+7x)=cos(−30+7x)=cos(x)cos(−30+7x)​
=−1+cos(x)cos(7x−30)​
Convert element to fraction: 1=cos(x)1cos(x)​=−cos(x)1⋅cos(x)​+cos(x)cos(−30+7x)​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=cos(x)−1⋅cos(x)+cos(−30+7x)​
Multiply: 1⋅cos(x)=cos(x)=cos(x)−cos(x)+cos(7x−30)​
=cos(x)−cos(x)+cos(−30+7x)​
cos(x)cos(−30+7x)−cos(x)​=0
g(x)f(x)​=0⇒f(x)=0cos(−30+7x)−cos(x)=0
Rewrite using trig identities
cos(−30+7x)−cos(x)
Use the Sum to Product identity: cos(s)−cos(t)=−2sin(2s+t​)sin(2s−t​)=−2sin(2−30+7x+x​)sin(2−30+7x−x​)
Simplify −2sin(2−30+7x+x​)sin(2−30+7x−x​):−2sin(−15+4x)sin(3(x−5))
−2sin(2−30+7x+x​)sin(2−30+7x−x​)
2−30+7x+x​=−15+4x
2−30+7x+x​
Add similar elements: 7x+x=8x=2−30+8x​
Factor −30+8x:2(−15+4x)
−30+8x
Rewrite as=−2⋅15+2⋅4x
Factor out common term 2=2(−15+4x)
=22(−15+4x)​
Divide the numbers: 22​=1=−15+4x
=−2sin((4x−15))sin(27x−x−30​)
2−30+7x−x​=3(x−5)
2−30+7x−x​
Add similar elements: 7x−x=6x=2−30+6x​
Factor −30+6x:6(−5+x)
−30+6x
Rewrite as=−6⋅5+6x
Factor out common term 6=6(−5+x)
=26(−5+x)​
Divide the numbers: 26​=3=3(x−5)
=−2sin((4x−15))sin(3(x−5))
Remove parentheses: (−a)=−a=−2sin(−15+4x)sin(3(x−5))
=−2sin(−15+4x)sin(3(x−5))
−2sin((−5+x)⋅3)sin(−15+4x)=0
Solving each part separatelysin((−5+x)⋅3)=0orsin(−15+4x)=0
sin((−5+x)⋅3)=0:x=32πn​+5,x=3π+2πn​+5
sin((−5+x)⋅3)=0
General solutions for sin((−5+x)3)=0
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
(−5+x)⋅3=0+2πn,(−5+x)⋅3=π+2πn
(−5+x)⋅3=0+2πn,(−5+x)⋅3=π+2πn
Solve (−5+x)3=0+2πn:x=32πn​+5
(−5+x)⋅3=0+2πn
0+2πn=2πn(−5+x)⋅3=2πn
Divide both sides by 3
(−5+x)⋅3=2πn
Divide both sides by 33(−5+x)⋅3​=32πn​
Simplify−5+x=32πn​
−5+x=32πn​
Move 5to the right side
−5+x=32πn​
Add 5 to both sides−5+x+5=32πn​+5
Simplifyx=32πn​+5
x=32πn​+5
Solve (−5+x)3=π+2πn:x=3π+2πn​+5
(−5+x)⋅3=π+2πn
Divide both sides by 3
(−5+x)⋅3=π+2πn
Divide both sides by 33(−5+x)⋅3​=3π​+32πn​
Simplify−5+x=3π​+32πn​
−5+x=3π​+32πn​
Move 5to the right side
−5+x=3π​+32πn​
Add 5 to both sides−5+x+5=3π​+32πn​+5
Simplify
−5+x+5=3π​+32πn​+5
Simplify −5+x+5:x
−5+x+5
Add similar elements: −5+5=0
=x
Simplify 3π​+32πn​+5:3π+2πn​+5
3π​+32πn​+5
Combine the fractions 3π​+32πn​:3π+2πn​
Apply rule ca​±cb​=ca±b​=3π+2πn​
=3π+2πn​+5
x=3π+2πn​+5
x=3π+2πn​+5
x=3π+2πn​+5
x=32πn​+5,x=3π+2πn​+5
sin(−15+4x)=0:x=2πn​+415​,x=4π​+415​+2πn​
sin(−15+4x)=0
General solutions for sin(−15+4x)=0
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
−15+4x=0+2πn,−15+4x=π+2πn
−15+4x=0+2πn,−15+4x=π+2πn
Solve −15+4x=0+2πn:x=2πn​+415​
−15+4x=0+2πn
0+2πn=2πn−15+4x=2πn
Move 15to the right side
−15+4x=2πn
Add 15 to both sides−15+4x+15=2πn+15
Simplify4x=2πn+15
4x=2πn+15
Divide both sides by 4
4x=2πn+15
Divide both sides by 444x​=42πn​+415​
Simplifyx=2πn​+415​
x=2πn​+415​
Solve −15+4x=π+2πn:x=4π​+415​+2πn​
−15+4x=π+2πn
Move 15to the right side
−15+4x=π+2πn
Add 15 to both sides−15+4x+15=π+2πn+15
Simplify4x=π+2πn+15
4x=π+2πn+15
Divide both sides by 4
4x=π+2πn+15
Divide both sides by 444x​=4π​+42πn​+415​
Simplify
44x​=4π​+42πn​+415​
Simplify 44x​:x
44x​
Divide the numbers: 44​=1=x
Simplify 4π​+42πn​+415​:4π​+415​+2πn​
4π​+42πn​+415​
Group like terms=4π​+415​+42πn​
Cancel 42πn​:2πn​
42πn​
Cancel the common factor: 2=2πn​
=4π​+415​+2πn​
x=4π​+415​+2πn​
x=4π​+415​+2πn​
x=4π​+415​+2πn​
x=2πn​+415​,x=4π​+415​+2πn​
Combine all the solutionsx=32πn​+5,x=3π+2πn​+5,x=2πn​+415​,x=4π​+415​+2πn​

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

sin(θ)= 45/532-sin^2(θ)+2sin(θ)=0tan(θ)=(37.3)/(36.46)sin(θ)cos(θ)=csc(θ)sec(θ)solvefor a,x=cos(a)
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024