Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

(2tan(x))/(1-tan^2(x))=sqrt(3)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

1−tan2(x)2tan(x)​=3​

Solution

x=32π​+πn,x=6π​+πn
+1
Degrees
x=120∘+180∘n,x=30∘+180∘n
Solution steps
1−tan2(x)2tan(x)​=3​
Solve by substitution
1−tan2(x)2tan(x)​=3​
Let: tan(x)=u1−u22u​=3​
1−u22u​=3​:u=−3​,u=33​​
1−u22u​=3​
Multiply both sides by 1−u2
1−u22u​=3​
Multiply both sides by 1−u21−u22u​(1−u2)=3​(1−u2)
Simplify2u=3​(1−u2)
2u=3​(1−u2)
Solve 2u=3​(1−u2):u=−3​,u=33​​
2u=3​(1−u2)
Expand 3​(1−u2):3​−3​u2
3​(1−u2)
Apply the distributive law: a(b−c)=ab−aca=3​,b=1,c=u2=3​⋅1−3​u2
=1⋅3​−3​u2
Multiply: 1⋅3​=3​=3​−3​u2
2u=3​−3​u2
Switch sides3​−3​u2=2u
Move 2uto the left side
3​−3​u2=2u
Subtract 2u from both sides3​−3​u2−2u=2u−2u
Simplify3​−3​u2−2u=0
3​−3​u2−2u=0
Write in the standard form ax2+bx+c=0−3​u2−2u+3​=0
Solve with the quadratic formula
−3​u2−2u+3​=0
Quadratic Equation Formula:
For a=−3​,b=−2,c=3​u1,2​=2(−3​)−(−2)±(−2)2−4(−3​)3​​​
u1,2​=2(−3​)−(−2)±(−2)2−4(−3​)3​​​
(−2)2−4(−3​)3​​=4
(−2)2−4(−3​)3​​
Apply rule −(−a)=a=(−2)2+43​3​​
(−2)2=22
(−2)2
Apply exponent rule: (−a)n=an,if n is even(−2)2=22=22
43​3​=12
43​3​
Apply radical rule: a​a​=a3​3​=3=4⋅3
Multiply the numbers: 4⋅3=12=12
=22+12​
22=4=4+12​
Add the numbers: 4+12=16=16​
Factor the number: 16=42=42​
Apply radical rule: 42​=4=4
u1,2​=2(−3​)−(−2)±4​
Separate the solutionsu1​=2(−3​)−(−2)+4​,u2​=2(−3​)−(−2)−4​
u=2(−3​)−(−2)+4​:−3​
2(−3​)−(−2)+4​
Remove parentheses: (−a)=−a,−(−a)=a=−23​2+4​
Add the numbers: 2+4=6=−23​6​
Apply the fraction rule: −ba​=−ba​=−23​6​
Divide the numbers: 26​=3=3​3​
Apply radical rule: 3​=321​=321​3​
Apply exponent rule: xbxa​=xa−b321​31​=31−21​=31−21​
Subtract the numbers: 1−21​=21​=321​
Apply radical rule: 321​=3​=−3​
u=2(−3​)−(−2)−4​:33​​
2(−3​)−(−2)−4​
Remove parentheses: (−a)=−a,−(−a)=a=−23​2−4​
Subtract the numbers: 2−4=−2=−23​−2​
Apply the fraction rule: −b−a​=ba​=23​2​
Divide the numbers: 22​=1=3​1​
Rationalize 3​1​:33​​
3​1​
Multiply by the conjugate 3​3​​=3​3​1⋅3​​
1⋅3​=3​
3​3​=3
3​3​
Apply radical rule: a​a​=a3​3​=3=3
=33​​
=33​​
The solutions to the quadratic equation are:u=−3​,u=33​​
u=−3​,u=33​​
Verify Solutions
Find undefined (singularity) points:u=1,u=−1
Take the denominator(s) of 1−u22u​ and compare to zero
Solve 1−u2=0:u=1,u=−1
1−u2=0
Move 1to the right side
1−u2=0
Subtract 1 from both sides1−u2−1=0−1
Simplify−u2=−1
−u2=−1
Divide both sides by −1
−u2=−1
Divide both sides by −1−1−u2​=−1−1​
Simplifyu2=1
u2=1
For x2=f(a) the solutions are x=f(a)​,−f(a)​
u=1​,u=−1​
1​=1
1​
Apply radical rule: 1​=1=1
−1​=−1
−1​
Apply radical rule: 1​=11​=1=−1
u=1,u=−1
The following points are undefinedu=1,u=−1
Combine undefined points with solutions:
u=−3​,u=33​​
Substitute back u=tan(x)tan(x)=−3​,tan(x)=33​​
tan(x)=−3​,tan(x)=33​​
tan(x)=−3​:x=32π​+πn
tan(x)=−3​
General solutions for tan(x)=−3​
tan(x) periodicity table with πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​tan(x)033​​13​±∞−3​−1−33​​​​
x=32π​+πn
x=32π​+πn
tan(x)=33​​:x=6π​+πn
tan(x)=33​​
General solutions for tan(x)=33​​
tan(x) periodicity table with πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​tan(x)033​​13​±∞−3​−1−33​​​​
x=6π​+πn
x=6π​+πn
Combine all the solutionsx=32π​+πn,x=6π​+πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

tan(x)= 59/56cos(θ)= 5/(5sqrt(2))arccos(x)=arcsin(9/41)solvefor x,-ysin(x)=02sin(x/2+pi/3)=sqrt(3)

Frequently Asked Questions (FAQ)

  • What is the general solution for (2tan(x))/(1-tan^2(x))=sqrt(3) ?

    The general solution for (2tan(x))/(1-tan^2(x))=sqrt(3) is x=(2pi)/3+pin,x= pi/6+pin
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024