Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

tan(θ)sec(θ)=cot(θ)csc(θ)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

tan(θ)sec(θ)=cot(θ)csc(θ)

Solution

θ=4π​+πn
+1
Degrees
θ=45∘+180∘n
Solution steps
tan(θ)sec(θ)=cot(θ)csc(θ)
Subtract cot(θ)csc(θ) from both sidestan(θ)sec(θ)−cot(θ)csc(θ)=0
Express with sin, cos
−cot(θ)csc(θ)+sec(θ)tan(θ)
Use the basic trigonometric identity: cot(x)=sin(x)cos(x)​=−sin(θ)cos(θ)​csc(θ)+sec(θ)tan(θ)
Use the basic trigonometric identity: csc(x)=sin(x)1​=−sin(θ)cos(θ)​⋅sin(θ)1​+sec(θ)tan(θ)
Use the basic trigonometric identity: sec(x)=cos(x)1​=−sin(θ)cos(θ)​⋅sin(θ)1​+cos(θ)1​tan(θ)
Use the basic trigonometric identity: tan(x)=cos(x)sin(x)​=−sin(θ)cos(θ)​⋅sin(θ)1​+cos(θ)1​⋅cos(θ)sin(θ)​
Simplify −sin(θ)cos(θ)​⋅sin(θ)1​+cos(θ)1​⋅cos(θ)sin(θ)​:sin2(θ)cos2(θ)−cos3(θ)+sin3(θ)​
−sin(θ)cos(θ)​⋅sin(θ)1​+cos(θ)1​⋅cos(θ)sin(θ)​
sin(θ)cos(θ)​⋅sin(θ)1​=sin2(θ)cos(θ)​
sin(θ)cos(θ)​⋅sin(θ)1​
Multiply fractions: ba​⋅dc​=b⋅da⋅c​=sin(θ)sin(θ)cos(θ)⋅1​
Multiply: cos(θ)⋅1=cos(θ)=sin(θ)sin(θ)cos(θ)​
sin(θ)sin(θ)=sin2(θ)
sin(θ)sin(θ)
Apply exponent rule: ab⋅ac=ab+csin(θ)sin(θ)=sin1+1(θ)=sin1+1(θ)
Add the numbers: 1+1=2=sin2(θ)
=sin2(θ)cos(θ)​
cos(θ)1​⋅cos(θ)sin(θ)​=cos2(θ)sin(θ)​
cos(θ)1​⋅cos(θ)sin(θ)​
Multiply fractions: ba​⋅dc​=b⋅da⋅c​=cos(θ)cos(θ)1⋅sin(θ)​
Multiply: 1⋅sin(θ)=sin(θ)=cos(θ)cos(θ)sin(θ)​
cos(θ)cos(θ)=cos2(θ)
cos(θ)cos(θ)
Apply exponent rule: ab⋅ac=ab+ccos(θ)cos(θ)=cos1+1(θ)=cos1+1(θ)
Add the numbers: 1+1=2=cos2(θ)
=cos2(θ)sin(θ)​
=−sin2(θ)cos(θ)​+cos2(θ)sin(θ)​
Least Common Multiplier of sin2(θ),cos2(θ):sin2(θ)cos2(θ)
sin2(θ),cos2(θ)
Lowest Common Multiplier (LCM)
Compute an expression comprised of factors that appear either in sin2(θ) or cos2(θ)=sin2(θ)cos2(θ)
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM sin2(θ)cos2(θ)
For sin2(θ)cos(θ)​:multiply the denominator and numerator by cos2(θ)sin2(θ)cos(θ)​=sin2(θ)cos2(θ)cos(θ)cos2(θ)​=sin2(θ)cos2(θ)cos3(θ)​
For cos2(θ)sin(θ)​:multiply the denominator and numerator by sin2(θ)cos2(θ)sin(θ)​=cos2(θ)sin2(θ)sin(θ)sin2(θ)​=sin2(θ)cos2(θ)sin3(θ)​
=−sin2(θ)cos2(θ)cos3(θ)​+sin2(θ)cos2(θ)sin3(θ)​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=sin2(θ)cos2(θ)−cos3(θ)+sin3(θ)​
=sin2(θ)cos2(θ)−cos3(θ)+sin3(θ)​
cos2(θ)sin2(θ)−cos3(θ)+sin3(θ)​=0
g(x)f(x)​=0⇒f(x)=0−cos3(θ)+sin3(θ)=0
Factor −cos3(θ)+sin3(θ):(sin(θ)−cos(θ))(sin2(θ)+sin(θ)cos(θ)+cos2(θ))
−cos3(θ)+sin3(θ)
Apply Difference of Cubes Formula: x3−y3=(x−y)(x2+xy+y2)sin3(θ)−cos3(θ)=(sin(θ)−cos(θ))(sin2(θ)+sin(θ)cos(θ)+cos2(θ))=(sin(θ)−cos(θ))(sin2(θ)+sin(θ)cos(θ)+cos2(θ))
(sin(θ)−cos(θ))(sin2(θ)+sin(θ)cos(θ)+cos2(θ))=0
Rewrite using trig identities
(sin(θ)−cos(θ))(sin2(θ)+sin(θ)cos(θ)+cos2(θ))
Use the Pythagorean identity: cos2(x)+sin2(x)=1=(−cos(θ)+sin(θ))(cos(θ)sin(θ)+1)
(−cos(θ)+sin(θ))(cos(θ)sin(θ)+1)=0
Solving each part separately−cos(θ)+sin(θ)=0orcos(θ)sin(θ)+1=0
−cos(θ)+sin(θ)=0:θ=4π​+πn
−cos(θ)+sin(θ)=0
Rewrite using trig identities
−cos(θ)+sin(θ)=0
Divide both sides by cos(θ),cos(θ)=0cos(θ)−cos(θ)+sin(θ)​=cos(θ)0​
Simplify−1+cos(θ)sin(θ)​=0
Use the basic trigonometric identity: cos(x)sin(x)​=tan(x)−1+tan(θ)=0
−1+tan(θ)=0
Move 1to the right side
−1+tan(θ)=0
Add 1 to both sides−1+tan(θ)+1=0+1
Simplifytan(θ)=1
tan(θ)=1
General solutions for tan(θ)=1
tan(x) periodicity table with πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​tan(x)033​​13​±∞−3​−1−33​​​​
θ=4π​+πn
θ=4π​+πn
cos(θ)sin(θ)+1=0:No Solution
cos(θ)sin(θ)+1=0
Rewrite using trig identities
cos(θ)sin(θ)+1
Use the Double Angle identity: 2sin(x)cos(x)=sin(2x)sin(x)cos(x)=2sin(2x)​=1+2sin(2θ)​
1+2sin(2θ)​=0
Move 1to the right side
1+2sin(2θ)​=0
Subtract 1 from both sides1+2sin(2θ)​−1=0−1
Simplify2sin(2θ)​=−1
2sin(2θ)​=−1
Multiply both sides by 2
2sin(2θ)​=−1
Multiply both sides by 222sin(2θ)​=2(−1)
Simplifysin(2θ)=−2
sin(2θ)=−2
−1≤sin(x)≤1NoSolution
Combine all the solutionsθ=4π​+πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

0=4+3cos(x)cos^2(x)-cos(x)=0.752sin^3(x)+cos^2(x)=12tan(x)=tan(x)tan(x)(2tan(x))/(1-tan^2(x))=sqrt(3)

Frequently Asked Questions (FAQ)

  • What is the general solution for tan(θ)sec(θ)=cot(θ)csc(θ) ?

    The general solution for tan(θ)sec(θ)=cot(θ)csc(θ) is θ= pi/4+pin
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024