Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

1.5=1+0.6cos((pit)/2)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

1.5=1+0.6cos(2πt​)

Solution

t=π2⋅0.58568…​+4n,t=4−π2⋅0.58568…​+4n
+1
Degrees
t=21.36324…∘+229.18311…∘n,t=207.81987…∘+229.18311…∘n
Solution steps
1.5=1+0.6cos(2πt​)
Switch sides1+0.6cos(2πt​)=1.5
Multiply both sides by 10
1+0.6cos(2πt​)=1.5
To eliminate decimal points, multiply by 10 for every digit after the decimal pointThere is one digit to the right of the decimal point, therefore multiply by 101⋅10+0.6cos(2πt​)⋅10=1.5⋅10
Refine10+6cos(2πt​)=15
10+6cos(2πt​)=15
Move 10to the right side
10+6cos(2πt​)=15
Subtract 10 from both sides10+6cos(2πt​)−10=15−10
Simplify6cos(2πt​)=5
6cos(2πt​)=5
Divide both sides by 6
6cos(2πt​)=5
Divide both sides by 666cos(2πt​)​=65​
Simplifycos(2πt​)=65​
cos(2πt​)=65​
Apply trig inverse properties
cos(2πt​)=65​
General solutions for cos(2πt​)=65​cos(x)=a⇒x=arccos(a)+2πn,x=2π−arccos(a)+2πn2πt​=arccos(65​)+2πn,2πt​=2π−arccos(65​)+2πn
2πt​=arccos(65​)+2πn,2πt​=2π−arccos(65​)+2πn
Solve 2πt​=arccos(65​)+2πn:t=π2arccos(65​)​+4n
2πt​=arccos(65​)+2πn
Multiply both sides by 2
2πt​=arccos(65​)+2πn
Multiply both sides by 222πt​=2arccos(65​)+2⋅2πn
Simplify
22πt​=2arccos(65​)+2⋅2πn
Simplify 22πt​:πt
22πt​
Divide the numbers: 22​=1=πt
Simplify 2arccos(65​)+2⋅2πn:2arccos(65​)+4πn
2arccos(65​)+2⋅2πn
Multiply the numbers: 2⋅2=4=2arccos(65​)+4πn
πt=2arccos(65​)+4πn
πt=2arccos(65​)+4πn
πt=2arccos(65​)+4πn
Divide both sides by π
πt=2arccos(65​)+4πn
Divide both sides by πππt​=π2arccos(65​)​+π4πn​
Simplifyt=π2arccos(65​)​+4n
t=π2arccos(65​)​+4n
Solve 2πt​=2π−arccos(65​)+2πn:t=4−π2arccos(65​)​+4n
2πt​=2π−arccos(65​)+2πn
Multiply both sides by 2
2πt​=2π−arccos(65​)+2πn
Multiply both sides by 222πt​=2⋅2π−2arccos(65​)+2⋅2πn
Simplify
22πt​=2⋅2π−2arccos(65​)+2⋅2πn
Simplify 22πt​:πt
22πt​
Divide the numbers: 22​=1=πt
Simplify 2⋅2π−2arccos(65​)+2⋅2πn:4π−2arccos(65​)+4πn
2⋅2π−2arccos(65​)+2⋅2πn
Multiply the numbers: 2⋅2=4=4π−2arccos(65​)+4πn
πt=4π−2arccos(65​)+4πn
πt=4π−2arccos(65​)+4πn
πt=4π−2arccos(65​)+4πn
Divide both sides by π
πt=4π−2arccos(65​)+4πn
Divide both sides by πππt​=π4π​−π2arccos(65​)​+π4πn​
Simplify
ππt​=π4π​−π2arccos(65​)​+π4πn​
Simplify ππt​:t
ππt​
Cancel the common factor: π=t
Simplify π4π​−π2arccos(65​)​+π4πn​:4−π2arccos(65​)​+4n
π4π​−π2arccos(65​)​+π4πn​
Cancel π4π​:4
π4π​
Cancel the common factor: π=4
=4−π2arccos(65​)​+π4πn​
Cancel π4πn​:4n
π4πn​
Cancel the common factor: π=4n
=4−π2arccos(65​)​+4n
t=4−π2arccos(65​)​+4n
t=4−π2arccos(65​)​+4n
t=4−π2arccos(65​)​+4n
t=π2arccos(65​)​+4n,t=4−π2arccos(65​)​+4n
Show solutions in decimal formt=π2⋅0.58568…​+4n,t=4−π2⋅0.58568…​+4n

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

tan(x)csc(x)=cos(2)solvefor x,z=e^ysin(x)ytan(θ)sec(θ)=cot(θ)csc(θ)0=4+3cos(x)cos^2(x)-cos(x)=0.75

Frequently Asked Questions (FAQ)

  • What is the general solution for 1.5=1+0.6cos((pit)/2) ?

    The general solution for 1.5=1+0.6cos((pit)/2) is t=(2*0.58568…)/pi+4n,t=4-(2*0.58568…)/pi+4n
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024