Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

2sin^2(x)+(-2-sqrt(2))sin(x)+sqrt(2)=0

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

2sin2(x)+(−2−2​)sin(x)+2​=0

Solution

x=2π​+2πn,x=4π​+2πn,x=43π​+2πn
+1
Degrees
x=90∘+360∘n,x=45∘+360∘n,x=135∘+360∘n
Solution steps
2sin2(x)+(−2−2​)sin(x)+2​=0
Solve by substitution
2sin2(x)+(−2−2​)sin(x)+2​=0
Let: sin(x)=u2u2+(−2−2​)u+2​=0
2u2+(−2−2​)u+2​=0:u=1,u=22​​
2u2+(−2−2​)u+2​=0
Expand 2u2+(−2−2​)u+2​:2u2−2u−2​u+2​
2u2+(−2−2​)u+2​
Expand u(−2−2​):−2u−2​u
u(−2−2​)
Apply the distributive law: a(b−c)=ab−aca=u,b=−2,c=2​=u(−2)−u2​
Apply minus-plus rules+(−a)=−a=−2u−2​u
=2u2−2u−2​u+2​
2u2−2u−2​u+2​=0
Write in the standard form ax2+bx+c=02u2−(2+2​)u+2​=0
Solve with the quadratic formula
2u2−(2+2​)u+2​=0
Quadratic Equation Formula:
For a=2,b=−2−2​,c=2​u1,2​=2⋅2−(−2−2​)±(−2−2​)2−4⋅22​​​
u1,2​=2⋅2−(−2−2​)±(−2−2​)2−4⋅22​​​
(−2−2​)2−4⋅22​​=2−2​
(−2−2​)2−4⋅22​​
Multiply the numbers: 4⋅2=8=(−2−2​)2−82​​
Expand (−2−2​)2−82​:6−42​
(−2−2​)2−82​
(−2−2​)2:6+42​
Apply Perfect Square Formula: (a−b)2=a2−2ab+b2a=−2,b=2​
=(−2)2−2(−2)2​+(2​)2
Simplify (−2)2−2(−2)2​+(2​)2:6+42​
(−2)2−2(−2)2​+(2​)2
Apply rule −(−a)=a=(−2)2+2⋅22​+(2​)2
(−2)2=4
(−2)2
Apply exponent rule: (−a)n=an,if n is even(−2)2=22=22
22=4=4
2⋅22​=42​
2⋅22​
Multiply the numbers: 2⋅2=4=42​
(2​)2=2
(2​)2
Apply radical rule: a​=a21​=(221​)2
Apply exponent rule: (ab)c=abc=221​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=2
=4+42​+2
Add the numbers: 4+2=6=6+42​
=6+42​
=6+42​−82​
Add similar elements: 42​−82​=−42​=6−42​
=6−42​​
=2−42​+4​
=(2​)2−42​+(4​)2​
4​=2
4​
Factor the number: 4=22=22​
Apply radical rule: 22​=2=2
=(2​)2−42​+22​
22​⋅2=42​
22​⋅2
Multiply the numbers: 2⋅2=4=42​
=(2​)2−22​⋅2+22​
Apply Perfect Square Formula: (a−b)2=a2−2ab+b2(2​)2−22​⋅2+22=(2​−2)2=(2​−2)2​
Apply exponent rule: (−a)n=an,if n is even(2​−2)2=(2−2​)2=(2−2​)2​
Apply radical rule: (2−2​)2​=2−2​=2−2​
u1,2​=2⋅2−(−2−2​)±(2−2​)​
Separate the solutionsu1​=2⋅2−(−2−2​)+2−2​​,u2​=2⋅2−(−2−2​)−(2−2​)​
u=2⋅2−(−2−2​)+2−2​​:1
2⋅2−(−2−2​)+2−2​​
Multiply the numbers: 2⋅2=4=4−(−2−2​)+2−2​​
Expand −(−2−2​)+2−2​:4
−(−2−2​)+2−2​
−(−2−2​):2+2​
−(−2−2​)
Distribute parentheses=−(−2)−(−2​)
Apply minus-plus rules−(−a)=a=2+2​
=2+2​+2−2​
Simplify 2+2​+2−2​:4
2+2​+2−2​
Add similar elements: 2​−2​=0=2+2
Add the numbers: 2+2=4=4
=4
=44​
Apply rule aa​=1=1
u=2⋅2−(−2−2​)−(2−2​)​:22​​
2⋅2−(−2−2​)−(2−2​)​
Multiply the numbers: 2⋅2=4=4−(−2−2​)−(2−2​)​
Expand −(−2−2​)−(2−2​):22​
−(−2−2​)−(2−2​)
−(−2−2​):2+2​
−(−2−2​)
Distribute parentheses=−(−2)−(−2​)
Apply minus-plus rules−(−a)=a=2+2​
=2+2​−(2−2​)
−(2−2​):−2+2​
−(2−2​)
Distribute parentheses=−(2)−(−2​)
Apply minus-plus rules−(−a)=a,−(a)=−a=−2+2​
=2+2​−2+2​
Simplify 2+2​−2+2​:22​
2+2​−2+2​
Add similar elements: 2​+2​=22​=2+22​−2
2−2=0=22​
=22​
=422​​
Cancel the common factor: 2=22​​
The solutions to the quadratic equation are:u=1,u=22​​
Substitute back u=sin(x)sin(x)=1,sin(x)=22​​
sin(x)=1,sin(x)=22​​
sin(x)=1:x=2π​+2πn
sin(x)=1
General solutions for sin(x)=1
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
x=2π​+2πn
x=2π​+2πn
sin(x)=22​​:x=4π​+2πn,x=43π​+2πn
sin(x)=22​​
General solutions for sin(x)=22​​
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
x=4π​+2πn,x=43π​+2πn
x=4π​+2πn,x=43π​+2πn
Combine all the solutionsx=2π​+2πn,x=4π​+2πn,x=43π​+2πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

3-sqrt(3)tan(2x)=4-2sqrt(3)tan(2x)cos(θ)= 3/(sqrt(34))tan(θ)+cot(θ)= 4/(sqrt(3))sec(x)+4cos(x)=5-sqrt(3)sec(x)=2
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024