Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

3/(tan(x))=(2tan(x))(2cos(x))

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

tan(x)3​=(2tan(x))(2cos(x))

Solution

x=0.80515…+2πn,x=2π−0.80515…+2πn
+1
Degrees
x=46.13190…∘+360∘n,x=313.86809…∘+360∘n
Solution steps
tan(x)3​=(2tan(x))(2cos(x))
Subtract 2tan(x)2cos(x) from both sidestan(x)3​−4tan(x)cos(x)=0
Simplify tan(x)3​−4tan(x)cos(x):tan(x)3−4tan2(x)cos(x)​
tan(x)3​−4tan(x)cos(x)
Convert element to fraction: 4tan(x)cos(x)=tan(x)4tan(x)cos(x)tan(x)​=tan(x)3​−tan(x)4tan(x)cos(x)tan(x)​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=tan(x)3−4tan(x)cos(x)tan(x)​
3−4tan(x)cos(x)tan(x)=3−4tan2(x)cos(x)
3−4tan(x)cos(x)tan(x)
4tan(x)cos(x)tan(x)=4tan2(x)cos(x)
4tan(x)cos(x)tan(x)
Apply exponent rule: ab⋅ac=ab+ctan(x)tan(x)=tan1+1(x)=4cos(x)tan1+1(x)
Add the numbers: 1+1=2=4cos(x)tan2(x)
=3−4tan2(x)cos(x)
=tan(x)3−4tan2(x)cos(x)​
tan(x)3−4tan2(x)cos(x)​=0
g(x)f(x)​=0⇒f(x)=03−4tan2(x)cos(x)=0
Express with sin, cos3−4(cos(x)sin(x)​)2cos(x)=0
Simplify 3−4(cos(x)sin(x)​)2cos(x):cos(x)3cos(x)−4sin2(x)​
3−4(cos(x)sin(x)​)2cos(x)
4(cos(x)sin(x)​)2cos(x)=cos(x)4sin2(x)​
4(cos(x)sin(x)​)2cos(x)
(cos(x)sin(x)​)2=cos2(x)sin2(x)​
(cos(x)sin(x)​)2
Apply exponent rule: (ba​)c=bcac​=cos2(x)sin2(x)​
=4⋅cos2(x)sin2(x)​cos(x)
Multiply fractions: a⋅cb​=ca⋅b​=cos2(x)sin2(x)⋅4cos(x)​
Cancel the common factor: cos(x)=cos(x)4sin2(x)​
=3−cos(x)4sin2(x)​
Convert element to fraction: 3=cos(x)3cos(x)​=cos(x)3cos(x)​−cos(x)4sin2(x)​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=cos(x)3cos(x)−4sin2(x)​
cos(x)3cos(x)−4sin2(x)​=0
g(x)f(x)​=0⇒f(x)=03cos(x)−4sin2(x)=0
Add 4sin2(x) to both sides3cos(x)=4sin2(x)
Square both sides(3cos(x))2=(4sin2(x))2
Subtract (4sin2(x))2 from both sides9cos2(x)−16sin4(x)=0
Factor 9cos2(x)−16sin4(x):(3cos(x)+4sin2(x))(3cos(x)−4sin2(x))
9cos2(x)−16sin4(x)
Rewrite 9cos2(x)−16sin4(x) as (3cos(x))2−(4sin2(x))2
9cos2(x)−16sin4(x)
Rewrite 9 as 32=32cos2(x)−16sin4(x)
Rewrite 16 as 42=32cos2(x)−42sin4(x)
Apply exponent rule: abc=(ab)csin4(x)=(sin2(x))2=32cos2(x)−42(sin2(x))2
Apply exponent rule: ambm=(ab)m32cos2(x)=(3cos(x))2=(3cos(x))2−42(sin2(x))2
Apply exponent rule: ambm=(ab)m42(sin2(x))2=(4sin2(x))2=(3cos(x))2−(4sin2(x))2
=(3cos(x))2−(4sin2(x))2
Apply Difference of Two Squares Formula: x2−y2=(x+y)(x−y)(3cos(x))2−(4sin2(x))2=(3cos(x)+4sin2(x))(3cos(x)−4sin2(x))=(3cos(x)+4sin2(x))(3cos(x)−4sin2(x))
(3cos(x)+4sin2(x))(3cos(x)−4sin2(x))=0
Solving each part separately3cos(x)+4sin2(x)=0or3cos(x)−4sin2(x)=0
3cos(x)+4sin2(x)=0:x=arccos(−8−3+73​​)+2πn,x=−arccos(−8−3+73​​)+2πn
3cos(x)+4sin2(x)=0
Rewrite using trig identities
3cos(x)+4sin2(x)
Use the Pythagorean identity: cos2(x)+sin2(x)=1sin2(x)=1−cos2(x)=3cos(x)+4(1−cos2(x))
(1−cos2(x))⋅4+3cos(x)=0
Solve by substitution
(1−cos2(x))⋅4+3cos(x)=0
Let: cos(x)=u(1−u2)⋅4+3u=0
(1−u2)⋅4+3u=0:u=−8−3+73​​,u=83+73​​
(1−u2)⋅4+3u=0
Expand (1−u2)⋅4+3u:4−4u2+3u
(1−u2)⋅4+3u
=4(1−u2)+3u
Expand 4(1−u2):4−4u2
4(1−u2)
Apply the distributive law: a(b−c)=ab−aca=4,b=1,c=u2=4⋅1−4u2
Multiply the numbers: 4⋅1=4=4−4u2
=4−4u2+3u
4−4u2+3u=0
Write in the standard form ax2+bx+c=0−4u2+3u+4=0
Solve with the quadratic formula
−4u2+3u+4=0
Quadratic Equation Formula:
For a=−4,b=3,c=4u1,2​=2(−4)−3±32−4(−4)⋅4​​
u1,2​=2(−4)−3±32−4(−4)⋅4​​
32−4(−4)⋅4​=73​
32−4(−4)⋅4​
Apply rule −(−a)=a=32+4⋅4⋅4​
Multiply the numbers: 4⋅4⋅4=64=32+64​
32=9=9+64​
Add the numbers: 9+64=73=73​
u1,2​=2(−4)−3±73​​
Separate the solutionsu1​=2(−4)−3+73​​,u2​=2(−4)−3−73​​
u=2(−4)−3+73​​:−8−3+73​​
2(−4)−3+73​​
Remove parentheses: (−a)=−a=−2⋅4−3+73​​
Multiply the numbers: 2⋅4=8=−8−3+73​​
Apply the fraction rule: −ba​=−ba​=−8−3+73​​
u=2(−4)−3−73​​:83+73​​
2(−4)−3−73​​
Remove parentheses: (−a)=−a=−2⋅4−3−73​​
Multiply the numbers: 2⋅4=8=−8−3−73​​
Apply the fraction rule: −b−a​=ba​−3−73​=−(3+73​)=83+73​​
The solutions to the quadratic equation are:u=−8−3+73​​,u=83+73​​
Substitute back u=cos(x)cos(x)=−8−3+73​​,cos(x)=83+73​​
cos(x)=−8−3+73​​,cos(x)=83+73​​
cos(x)=−8−3+73​​:x=arccos(−8−3+73​​)+2πn,x=−arccos(−8−3+73​​)+2πn
cos(x)=−8−3+73​​
Apply trig inverse properties
cos(x)=−8−3+73​​
General solutions for cos(x)=−8−3+73​​cos(x)=−a⇒x=arccos(−a)+2πn,x=−arccos(−a)+2πnx=arccos(−8−3+73​​)+2πn,x=−arccos(−8−3+73​​)+2πn
x=arccos(−8−3+73​​)+2πn,x=−arccos(−8−3+73​​)+2πn
cos(x)=83+73​​:No Solution
cos(x)=83+73​​
−1≤cos(x)≤1NoSolution
Combine all the solutionsx=arccos(−8−3+73​​)+2πn,x=−arccos(−8−3+73​​)+2πn
3cos(x)−4sin2(x)=0:x=arccos(8−3+73​​)+2πn,x=2π−arccos(8−3+73​​)+2πn
3cos(x)−4sin2(x)=0
Rewrite using trig identities
3cos(x)−4sin2(x)
Use the Pythagorean identity: cos2(x)+sin2(x)=1sin2(x)=1−cos2(x)=3cos(x)−4(1−cos2(x))
−(1−cos2(x))⋅4+3cos(x)=0
Solve by substitution
−(1−cos2(x))⋅4+3cos(x)=0
Let: cos(x)=u−(1−u2)⋅4+3u=0
−(1−u2)⋅4+3u=0:u=8−3+73​​,u=8−3−73​​
−(1−u2)⋅4+3u=0
Expand −(1−u2)⋅4+3u:−4+4u2+3u
−(1−u2)⋅4+3u
=−4(1−u2)+3u
Expand −4(1−u2):−4+4u2
−4(1−u2)
Apply the distributive law: a(b−c)=ab−aca=−4,b=1,c=u2=−4⋅1−(−4)u2
Apply minus-plus rules−(−a)=a=−4⋅1+4u2
Multiply the numbers: 4⋅1=4=−4+4u2
=−4+4u2+3u
−4+4u2+3u=0
Write in the standard form ax2+bx+c=04u2+3u−4=0
Solve with the quadratic formula
4u2+3u−4=0
Quadratic Equation Formula:
For a=4,b=3,c=−4u1,2​=2⋅4−3±32−4⋅4(−4)​​
u1,2​=2⋅4−3±32−4⋅4(−4)​​
32−4⋅4(−4)​=73​
32−4⋅4(−4)​
Apply rule −(−a)=a=32+4⋅4⋅4​
Multiply the numbers: 4⋅4⋅4=64=32+64​
32=9=9+64​
Add the numbers: 9+64=73=73​
u1,2​=2⋅4−3±73​​
Separate the solutionsu1​=2⋅4−3+73​​,u2​=2⋅4−3−73​​
u=2⋅4−3+73​​:8−3+73​​
2⋅4−3+73​​
Multiply the numbers: 2⋅4=8=8−3+73​​
u=2⋅4−3−73​​:8−3−73​​
2⋅4−3−73​​
Multiply the numbers: 2⋅4=8=8−3−73​​
The solutions to the quadratic equation are:u=8−3+73​​,u=8−3−73​​
Substitute back u=cos(x)cos(x)=8−3+73​​,cos(x)=8−3−73​​
cos(x)=8−3+73​​,cos(x)=8−3−73​​
cos(x)=8−3+73​​:x=arccos(8−3+73​​)+2πn,x=2π−arccos(8−3+73​​)+2πn
cos(x)=8−3+73​​
Apply trig inverse properties
cos(x)=8−3+73​​
General solutions for cos(x)=8−3+73​​cos(x)=a⇒x=arccos(a)+2πn,x=2π−arccos(a)+2πnx=arccos(8−3+73​​)+2πn,x=2π−arccos(8−3+73​​)+2πn
x=arccos(8−3+73​​)+2πn,x=2π−arccos(8−3+73​​)+2πn
cos(x)=8−3−73​​:No Solution
cos(x)=8−3−73​​
−1≤cos(x)≤1NoSolution
Combine all the solutionsx=arccos(8−3+73​​)+2πn,x=2π−arccos(8−3+73​​)+2πn
Combine all the solutionsx=arccos(−8−3+73​​)+2πn,x=−arccos(−8−3+73​​)+2πn,x=arccos(8−3+73​​)+2πn,x=2π−arccos(8−3+73​​)+2πn
Verify solutions by plugging them into the original equation
Check the solutions by plugging them into tan(x)3​=2tan(x)2cos(x)
Remove the ones that don't agree with the equation.
Check the solution arccos(−8−3+73​​)+2πn:False
arccos(−8−3+73​​)+2πn
Plug in n=1arccos(−8−3+73​​)+2π1
For tan(x)3​=2tan(x)2cos(x)plug inx=arccos(−8−3+73​​)+2π1tan(arccos(−8−3+73​​)+2π1)3​=2tan(arccos(−8−3+73​​)+2π1)⋅2cos(arccos(−8−3+73​​)+2π1)
Refine−2.88374…=2.88374…
⇒False
Check the solution −arccos(−8−3+73​​)+2πn:False
−arccos(−8−3+73​​)+2πn
Plug in n=1−arccos(−8−3+73​​)+2π1
For tan(x)3​=2tan(x)2cos(x)plug inx=−arccos(−8−3+73​​)+2π1tan(−arccos(−8−3+73​​)+2π1)3​=2tan(−arccos(−8−3+73​​)+2π1)⋅2cos(−arccos(−8−3+73​​)+2π1)
Refine2.88374…=−2.88374…
⇒False
Check the solution arccos(8−3+73​​)+2πn:True
arccos(8−3+73​​)+2πn
Plug in n=1arccos(8−3+73​​)+2π1
For tan(x)3​=2tan(x)2cos(x)plug inx=arccos(8−3+73​​)+2π1tan(arccos(8−3+73​​)+2π1)3​=2tan(arccos(8−3+73​​)+2π1)⋅2cos(arccos(8−3+73​​)+2π1)
Refine2.88374…=2.88374…
⇒True
Check the solution 2π−arccos(8−3+73​​)+2πn:True
2π−arccos(8−3+73​​)+2πn
Plug in n=12π−arccos(8−3+73​​)+2π1
For tan(x)3​=2tan(x)2cos(x)plug inx=2π−arccos(8−3+73​​)+2π1tan(2π−arccos(8−3+73​​)+2π1)3​=2tan(2π−arccos(8−3+73​​)+2π1)⋅2cos(2π−arccos(8−3+73​​)+2π1)
Refine−2.88374…=−2.88374…
⇒True
x=arccos(8−3+73​​)+2πn,x=2π−arccos(8−3+73​​)+2πn
Show solutions in decimal formx=0.80515…+2πn,x=2π−0.80515…+2πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

cos(θ)=-4/5 ,sin(θ)5sin(4x)=4cos(2x)arccosh(x)=1solvefor θ,sin(3θ)= 1/20=-0.5sin(x/5)

Frequently Asked Questions (FAQ)

  • What is the general solution for 3/(tan(x))=(2tan(x))(2cos(x)) ?

    The general solution for 3/(tan(x))=(2tan(x))(2cos(x)) is x=0.80515…+2pin,x=2pi-0.80515…+2pin
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024