Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

5sin(4x)=4cos(2x)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

5sin(4x)=4cos(2x)

Solution

x=4π+4πn​,x=43π+4πn​,x=20.41151…+2πn​,x=2π−0.41151…+2πn​
+1
Degrees
x=45∘+180∘n,x=135∘+180∘n,x=11.78908…∘+180∘n,x=78.21091…∘+180∘n
Solution steps
5sin(4x)=4cos(2x)
Subtract 4cos(2x) from both sides5sin(4x)−4cos(2x)=0
Let: u=2x5sin(2u)−4cos(u)=0
Rewrite using trig identities
−4cos(u)+5sin(2u)
Use the Double Angle identity: sin(2x)=2sin(x)cos(x)=−4cos(u)+5⋅2sin(u)cos(u)
Simplify=−4cos(u)+10sin(u)cos(u)
−4cos(u)+10cos(u)sin(u)=0
Factor −4cos(u)+10cos(u)sin(u):2cos(u)(5sin(u)−2)
−4cos(u)+10cos(u)sin(u)
Rewrite 10 as 5⋅2Rewrite −4 as 2⋅2=2⋅2cos(u)+5⋅2sin(u)cos(u)
Factor out common term 2cos(u)=2cos(u)(−2+5sin(u))
2cos(u)(5sin(u)−2)=0
Solving each part separatelycos(u)=0or5sin(u)−2=0
cos(u)=0:u=2π​+2πn,u=23π​+2πn
cos(u)=0
General solutions for cos(u)=0
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
u=2π​+2πn,u=23π​+2πn
u=2π​+2πn,u=23π​+2πn
5sin(u)−2=0:u=arcsin(52​)+2πn,u=π−arcsin(52​)+2πn
5sin(u)−2=0
Move 2to the right side
5sin(u)−2=0
Add 2 to both sides5sin(u)−2+2=0+2
Simplify5sin(u)=2
5sin(u)=2
Divide both sides by 5
5sin(u)=2
Divide both sides by 555sin(u)​=52​
Simplifysin(u)=52​
sin(u)=52​
Apply trig inverse properties
sin(u)=52​
General solutions for sin(u)=52​sin(x)=a⇒x=arcsin(a)+2πn,x=π−arcsin(a)+2πnu=arcsin(52​)+2πn,u=π−arcsin(52​)+2πn
u=arcsin(52​)+2πn,u=π−arcsin(52​)+2πn
Combine all the solutionsu=2π​+2πn,u=23π​+2πn,u=arcsin(52​)+2πn,u=π−arcsin(52​)+2πn
Substitute back u=2x
2x=2π​+2πn:x=4π+4πn​
2x=2π​+2πn
Divide both sides by 2
2x=2π​+2πn
Divide both sides by 222x​=22π​​+22πn​
Simplify
22x​=22π​​+22πn​
Simplify 22x​:x
22x​
Divide the numbers: 22​=1=x
Simplify 22π​​+22πn​:4π+4πn​
22π​​+22πn​
Apply rule ca​±cb​=ca±b​=22π​+2πn​
Join 2π​+2πn:2π+4πn​
2π​+2πn
Convert element to fraction: 2πn=22πn2​=2π​+22πn⋅2​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=2π+2πn⋅2​
Multiply the numbers: 2⋅2=4=2π+4πn​
=22π+4πn​​
Apply the fraction rule: acb​​=c⋅ab​=2⋅2π+4πn​
Multiply the numbers: 2⋅2=4=4π+4πn​
x=4π+4πn​
x=4π+4πn​
x=4π+4πn​
2x=23π​+2πn:x=43π+4πn​
2x=23π​+2πn
Divide both sides by 2
2x=23π​+2πn
Divide both sides by 222x​=223π​​+22πn​
Simplify
22x​=223π​​+22πn​
Simplify 22x​:x
22x​
Divide the numbers: 22​=1=x
Simplify 223π​​+22πn​:43π+4πn​
223π​​+22πn​
Apply rule ca​±cb​=ca±b​=223π​+2πn​
Join 23π​+2πn:23π+4πn​
23π​+2πn
Convert element to fraction: 2πn=22πn2​=23π​+22πn⋅2​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=23π+2πn⋅2​
Multiply the numbers: 2⋅2=4=23π+4πn​
=223π+4πn​​
Apply the fraction rule: acb​​=c⋅ab​=2⋅23π+4πn​
Multiply the numbers: 2⋅2=4=43π+4πn​
x=43π+4πn​
x=43π+4πn​
x=43π+4πn​
2x=arcsin(52​)+2πn:x=2arcsin(52​)+2πn​
2x=arcsin(52​)+2πn
Divide both sides by 2
2x=arcsin(52​)+2πn
Divide both sides by 222x​=2arcsin(52​)​+22πn​
Simplify
22x​=2arcsin(52​)​+22πn​
Simplify 22x​:x
22x​
Divide the numbers: 22​=1=x
Simplify 2arcsin(52​)​+22πn​:2arcsin(52​)+2πn​
2arcsin(52​)​+22πn​
Apply rule ca​±cb​=ca±b​=2arcsin(52​)+2πn​
x=2arcsin(52​)+2πn​
x=2arcsin(52​)+2πn​
x=2arcsin(52​)+2πn​
2x=π−arcsin(52​)+2πn:x=2π−arcsin(52​)+2πn​
2x=π−arcsin(52​)+2πn
Divide both sides by 2
2x=π−arcsin(52​)+2πn
Divide both sides by 222x​=2π​−2arcsin(52​)​+22πn​
Simplify
22x​=2π​−2arcsin(52​)​+22πn​
Simplify 22x​:x
22x​
Divide the numbers: 22​=1=x
Simplify 2π​−2arcsin(52​)​+22πn​:2π−arcsin(52​)+2πn​
2π​−2arcsin(52​)​+22πn​
Apply rule ca​±cb​=ca±b​=2π−arcsin(52​)+2πn​
x=2π−arcsin(52​)+2πn​
x=2π−arcsin(52​)+2πn​
x=2π−arcsin(52​)+2πn​
x=4π+4πn​,x=43π+4πn​,x=2arcsin(52​)+2πn​,x=2π−arcsin(52​)+2πn​
Show solutions in decimal formx=4π+4πn​,x=43π+4πn​,x=20.41151…+2πn​,x=2π−0.41151…+2πn​

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

arccosh(x)=1solvefor θ,sin(3θ)= 1/20=-0.5sin(x/5)(408.4)/(sin(130))=(200)/(sin(x))cot(θ)=-7/6
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024