Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

2cos(3x)+cos(2x)+1=0,0<= x<= 2pi

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

2cos(3x)+cos(2x)+1=0,0≤x≤2π

Solution

x=2π​,x=23π​,x=0.72273…,x=2π−0.72273…,x=π
+1
Degrees
x=90∘,x=270∘,x=41.40962…∘,x=318.59037…∘,x=180∘
Solution steps
2cos(3x)+cos(2x)+1=0,0≤x≤2π
Rewrite using trig identities
1+cos(2x)+2cos(3x)
Use the Double Angle identity: cos(2x)=2cos2(x)−1=1+2cos2(x)−1+2cos(3x)
Simplify 1+2cos2(x)−1+2cos(3x):2cos2(x)+2cos(3x)
1+2cos2(x)−1+2cos(3x)
Group like terms=2cos2(x)+2cos(3x)+1−1
1−1=0=2cos2(x)+2cos(3x)
=2cos2(x)+2cos(3x)
cos(3x)=4cos3(x)−3cos(x)
cos(3x)
Rewrite using trig identities
cos(3x)
Rewrite as=cos(2x+x)
Use the Angle Sum identity: cos(s+t)=cos(s)cos(t)−sin(s)sin(t)=cos(2x)cos(x)−sin(2x)sin(x)
Use the Double Angle identity: sin(2x)=2sin(x)cos(x)=cos(2x)cos(x)−2sin(x)cos(x)sin(x)
Simplify cos(2x)cos(x)−2sin(x)cos(x)sin(x):cos(x)cos(2x)−2sin2(x)cos(x)
cos(2x)cos(x)−2sin(x)cos(x)sin(x)
2sin(x)cos(x)sin(x)=2sin2(x)cos(x)
2sin(x)cos(x)sin(x)
Apply exponent rule: ab⋅ac=ab+csin(x)sin(x)=sin1+1(x)=2cos(x)sin1+1(x)
Add the numbers: 1+1=2=2cos(x)sin2(x)
=cos(x)cos(2x)−2sin2(x)cos(x)
=cos(x)cos(2x)−2sin2(x)cos(x)
=cos(x)cos(2x)−2sin2(x)cos(x)
Use the Double Angle identity: cos(2x)=2cos2(x)−1=(2cos2(x)−1)cos(x)−2sin2(x)cos(x)
Use the Pythagorean identity: cos2(x)+sin2(x)=1sin2(x)=1−cos2(x)=(2cos2(x)−1)cos(x)−2(1−cos2(x))cos(x)
Expand (2cos2(x)−1)cos(x)−2(1−cos2(x))cos(x):4cos3(x)−3cos(x)
(2cos2(x)−1)cos(x)−2(1−cos2(x))cos(x)
=cos(x)(2cos2(x)−1)−2cos(x)(1−cos2(x))
Expand cos(x)(2cos2(x)−1):2cos3(x)−cos(x)
cos(x)(2cos2(x)−1)
Apply the distributive law: a(b−c)=ab−aca=cos(x),b=2cos2(x),c=1=cos(x)2cos2(x)−cos(x)1
=2cos2(x)cos(x)−1cos(x)
Simplify 2cos2(x)cos(x)−1⋅cos(x):2cos3(x)−cos(x)
2cos2(x)cos(x)−1cos(x)
2cos2(x)cos(x)=2cos3(x)
2cos2(x)cos(x)
Apply exponent rule: ab⋅ac=ab+ccos2(x)cos(x)=cos2+1(x)=2cos2+1(x)
Add the numbers: 2+1=3=2cos3(x)
1⋅cos(x)=cos(x)
1cos(x)
Multiply: 1⋅cos(x)=cos(x)=cos(x)
=2cos3(x)−cos(x)
=2cos3(x)−cos(x)
=2cos3(x)−cos(x)−2(1−cos2(x))cos(x)
Expand −2cos(x)(1−cos2(x)):−2cos(x)+2cos3(x)
−2cos(x)(1−cos2(x))
Apply the distributive law: a(b−c)=ab−aca=−2cos(x),b=1,c=cos2(x)=−2cos(x)1−(−2cos(x))cos2(x)
Apply minus-plus rules−(−a)=a=−2⋅1cos(x)+2cos2(x)cos(x)
Simplify −2⋅1⋅cos(x)+2cos2(x)cos(x):−2cos(x)+2cos3(x)
−2⋅1cos(x)+2cos2(x)cos(x)
2⋅1⋅cos(x)=2cos(x)
2⋅1cos(x)
Multiply the numbers: 2⋅1=2=2cos(x)
2cos2(x)cos(x)=2cos3(x)
2cos2(x)cos(x)
Apply exponent rule: ab⋅ac=ab+ccos2(x)cos(x)=cos2+1(x)=2cos2+1(x)
Add the numbers: 2+1=3=2cos3(x)
=−2cos(x)+2cos3(x)
=−2cos(x)+2cos3(x)
=2cos3(x)−cos(x)−2cos(x)+2cos3(x)
Simplify 2cos3(x)−cos(x)−2cos(x)+2cos3(x):4cos3(x)−3cos(x)
2cos3(x)−cos(x)−2cos(x)+2cos3(x)
Group like terms=2cos3(x)+2cos3(x)−cos(x)−2cos(x)
Add similar elements: 2cos3(x)+2cos3(x)=4cos3(x)=4cos3(x)−cos(x)−2cos(x)
Add similar elements: −cos(x)−2cos(x)=−3cos(x)=4cos3(x)−3cos(x)
=4cos3(x)−3cos(x)
=4cos3(x)−3cos(x)
=2(4cos3(x)−3cos(x))+2cos2(x)
(−3cos(x)+4cos3(x))⋅2+2cos2(x)=0
Solve by substitution
(−3cos(x)+4cos3(x))⋅2+2cos2(x)=0
Let: cos(x)=u(−3u+4u3)⋅2+2u2=0
(−3u+4u3)⋅2+2u2=0:u=0,u=43​,u=−1
(−3u+4u3)⋅2+2u2=0
Factor (−3u+4u3)⋅2+2u2:2u(4u−3)(u+1)
(−3u+4u3)⋅2+2u2
Factor out common term 2=2(u3⋅4−3u+u2)
Factor 4u3+u2−3u:u(4u−3)(u+1)
u3⋅4−3u+u2
Factor out common term u:u(4u2+u−3)
4u3+u2−3u
Apply exponent rule: ab+c=abacu2=uu=4u2u+uu−3u
Factor out common term u=u(4u2+u−3)
=u(4u2+u−3)
Factor 4u2+u−3:(4u−3)(u+1)
4u2+u−3
Write in the standard form ax2+bx+c=4u2+u−3
Break the expression into groups
4u2+u−3
Definition
Factors of 12:1,2,3,4,6,12
12
Divisors (Factors)
Find the Prime factors of 12:2,2,3
12
12divides by 212=6⋅2=2⋅6
6divides by 26=3⋅2=2⋅2⋅3
2,3 are all prime numbers, therefore no further factorization is possible=2⋅2⋅3
Multiply the prime factors of 12:4,6
2⋅2=42⋅3=6
4,6
4,6
Add the prime factors: 2,3
Add 1 and the number 12 itself1,12
The factors of 121,2,3,4,6,12
Negative factors of 12:−1,−2,−3,−4,−6,−12
Multiply the factors by −1 to get the negative factors−1,−2,−3,−4,−6,−12
For every two factors such that u∗v=−12,check if u+v=1
Check u=1,v=−12:u∗v=−12,u+v=−11⇒FalseCheck u=2,v=−6:u∗v=−12,u+v=−4⇒False
u=4,v=−3
Group into (ax2+ux)+(vx+c)(4u2−3u)+(4u−3)
=(4u2−3u)+(4u−3)
Factor out ufrom 4u2−3u:u(4u−3)
4u2−3u
Apply exponent rule: ab+c=abacu2=uu=4uu−3u
Factor out common term u=u(4u−3)
=u(4u−3)+(4u−3)
Factor out common term 4u−3=(4u−3)(u+1)
=u(4u−3)(u+1)
=2u(u+1)(4u−3)
=2u(4u−3)(u+1)
2u(4u−3)(u+1)=0
Using the Zero Factor Principle: If ab=0then a=0or b=0u=0or4u−3=0oru+1=0
Solve 4u−3=0:u=43​
4u−3=0
Move 3to the right side
4u−3=0
Add 3 to both sides4u−3+3=0+3
Simplify4u=3
4u=3
Divide both sides by 4
4u=3
Divide both sides by 444u​=43​
Simplifyu=43​
u=43​
Solve u+1=0:u=−1
u+1=0
Move 1to the right side
u+1=0
Subtract 1 from both sidesu+1−1=0−1
Simplifyu=−1
u=−1
The solutions areu=0,u=43​,u=−1
Substitute back u=cos(x)cos(x)=0,cos(x)=43​,cos(x)=−1
cos(x)=0,cos(x)=43​,cos(x)=−1
cos(x)=0,0≤x≤2π:x=2π​,x=23π​
cos(x)=0,0≤x≤2π
General solutions for cos(x)=0
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
x=2π​+2πn,x=23π​+2πn
x=2π​+2πn,x=23π​+2πn
Solutions for the range 0≤x≤2πx=2π​,x=23π​
cos(x)=43​,0≤x≤2π:x=arccos(43​),x=2π−arccos(43​)
cos(x)=43​,0≤x≤2π
Apply trig inverse properties
cos(x)=43​
General solutions for cos(x)=43​cos(x)=a⇒x=arccos(a)+2πn,x=2π−arccos(a)+2πnx=arccos(43​)+2πn,x=2π−arccos(43​)+2πn
x=arccos(43​)+2πn,x=2π−arccos(43​)+2πn
Solutions for the range 0≤x≤2πx=arccos(43​),x=2π−arccos(43​)
cos(x)=−1,0≤x≤2π:x=π
cos(x)=−1,0≤x≤2π
General solutions for cos(x)=−1
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
x=π+2πn
x=π+2πn
Solutions for the range 0≤x≤2πx=π
Combine all the solutionsx=2π​,x=23π​,x=arccos(43​),x=2π−arccos(43​),x=π
Show solutions in decimal formx=2π​,x=23π​,x=0.72273…,x=2π−0.72273…,x=π

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

tan^2(x)=sqrt(3)tan(x)csc^2(x)-2tan(x)=05sin(2x)=cos(x)2sin(x+pi/3)=-1cot^2(a)=cos^2(a)+cos(a)cos(a)
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024