Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

1+cos(x)=sqrt(3)-sin(x)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

1+cos(x)=3​−sin(x)

Solution

x=0.54408…+2πn−4π​,x=π−0.54408…+2πn−4π​
+1
Degrees
x=−13.82604…∘+360∘n,x=103.82604…∘+360∘n
Solution steps
1+cos(x)=3​−sin(x)
Subtract 3​−sin(x) from both sides1+cos(x)−3​+sin(x)=0
Rewrite using trig identities
1+cos(x)−3​+sin(x)
sin(x)+cos(x)=2​sin(x+4π​)
sin(x)+cos(x)
Rewrite as=2​(2​1​sin(x)+2​1​cos(x))
Use the following trivial identity: cos(4π​)=2​1​Use the following trivial identity: sin(4π​)=2​1​=2​(cos(4π​)sin(x)+sin(4π​)cos(x))
Use the Angle Sum identity: sin(s+t)=sin(s)cos(t)+cos(s)sin(t)=2​sin(x+4π​)
=1−3​+2​sin(x+4π​)
1−3​+2​sin(x+4π​)=0
Move 1to the right side
1−3​+2​sin(x+4π​)=0
Subtract 1 from both sides1−3​+2​sin(x+4π​)−1=0−1
Simplify−3​+2​sin(x+4π​)=−1
−3​+2​sin(x+4π​)=−1
Move 3​to the right side
−3​+2​sin(x+4π​)=−1
Add 3​ to both sides−3​+2​sin(x+4π​)+3​=−1+3​
Simplify2​sin(x+4π​)=−1+3​
2​sin(x+4π​)=−1+3​
Divide both sides by 2​
2​sin(x+4π​)=−1+3​
Divide both sides by 2​2​2​sin(x+4π​)​=−2​1​+2​3​​
Simplify
2​2​sin(x+4π​)​=−2​1​+2​3​​
Simplify 2​2​sin(x+4π​)​:sin(x+4π​)
2​2​sin(x+4π​)​
Cancel the common factor: 2​=sin(x+4π​)
Simplify −2​1​+2​3​​:22​(−1+3​)​
−2​1​+2​3​​
Apply rule ca​±cb​=ca±b​=2​−1+3​​
Multiply by the conjugate 2​2​​=2​2​(−1+3​)2​​
2​2​=2
2​2​
Apply radical rule: a​a​=a2​2​=2=2
=22​(−1+3​)​
sin(x+4π​)=22​(−1+3​)​
sin(x+4π​)=22​(−1+3​)​
sin(x+4π​)=22​(−1+3​)​
Apply trig inverse properties
sin(x+4π​)=22​(−1+3​)​
General solutions for sin(x+4π​)=22​(−1+3​)​sin(x)=a⇒x=arcsin(a)+2πn,x=π−arcsin(a)+2πnx+4π​=arcsin(22​(−1+3​)​)+2πn,x+4π​=π−arcsin(22​(−1+3​)​)+2πn
x+4π​=arcsin(22​(−1+3​)​)+2πn,x+4π​=π−arcsin(22​(−1+3​)​)+2πn
Solve x+4π​=arcsin(22​(−1+3​)​)+2πn:x=arcsin(2​−1+3​​)+2πn−4π​
x+4π​=arcsin(22​(−1+3​)​)+2πn
Simplify arcsin(22​(−1+3​)​)+2πn:arcsin(2​−1+3​​)+2πn
arcsin(22​(−1+3​)​)+2πn
22​(−1+3​)​=2​−1+3​​
22​(−1+3​)​
Apply radical rule: na​=an1​2​=221​=2221​(3​−1)​
Apply exponent rule: xbxa​=xb−a1​21221​​=21−21​1​=21−21​−1+3​​
Subtract the numbers: 1−21​=21​=221​−1+3​​
Apply radical rule: an1​=na​221​=2​=2​−1+3​​
=arcsin(2​3​−1​)+2πn
x+4π​=arcsin(2​−1+3​​)+2πn
Move 4π​to the right side
x+4π​=arcsin(2​−1+3​​)+2πn
Subtract 4π​ from both sidesx+4π​−4π​=arcsin(2​−1+3​​)+2πn−4π​
Simplify
x+4π​−4π​=arcsin(2​−1+3​​)+2πn−4π​
Simplify x+4π​−4π​:x
x+4π​−4π​
Add similar elements: 4π​−4π​=0
=x
Simplify arcsin(2​−1+3​​)+2πn−4π​:arcsin(2​−1+3​​)+2πn−4π​
arcsin(2​−1+3​​)+2πn−4π​
=arcsin(22​(3​−1)​)+2πn−4π​
22​(−1+3​)​=2​−1+3​​
22​(−1+3​)​
Apply radical rule: na​=an1​2​=221​=2221​(3​−1)​
Apply exponent rule: xbxa​=xb−a1​21221​​=21−21​1​=21−21​−1+3​​
Subtract the numbers: 1−21​=21​=221​−1+3​​
Apply radical rule: an1​=na​221​=2​=2​−1+3​​
=arcsin(2​3​−1​)+2πn−4π​
Could not simplify further=arcsin(2​3​−1​)+2πn−4π​
x=arcsin(2​−1+3​​)+2πn−4π​
x=arcsin(2​−1+3​​)+2πn−4π​
x=arcsin(2​−1+3​​)+2πn−4π​
Solve x+4π​=π−arcsin(22​(−1+3​)​)+2πn:x=π−arcsin(2​−1+3​​)+2πn−4π​
x+4π​=π−arcsin(22​(−1+3​)​)+2πn
Simplify π−arcsin(22​(−1+3​)​)+2πn:π−arcsin(2​−1+3​​)+2πn
π−arcsin(22​(−1+3​)​)+2πn
22​(−1+3​)​=2​−1+3​​
22​(−1+3​)​
Apply radical rule: na​=an1​2​=221​=2221​(3​−1)​
Apply exponent rule: xbxa​=xb−a1​21221​​=21−21​1​=21−21​−1+3​​
Subtract the numbers: 1−21​=21​=221​−1+3​​
Apply radical rule: an1​=na​221​=2​=2​−1+3​​
=π−arcsin(2​3​−1​)+2πn
x+4π​=π−arcsin(2​−1+3​​)+2πn
Move 4π​to the right side
x+4π​=π−arcsin(2​−1+3​​)+2πn
Subtract 4π​ from both sidesx+4π​−4π​=π−arcsin(2​−1+3​​)+2πn−4π​
Simplify
x+4π​−4π​=π−arcsin(2​−1+3​​)+2πn−4π​
Simplify x+4π​−4π​:x
x+4π​−4π​
Add similar elements: 4π​−4π​=0
=x
Simplify π−arcsin(2​−1+3​​)+2πn−4π​:π−arcsin(2​−1+3​​)+2πn−4π​
π−arcsin(2​−1+3​​)+2πn−4π​
=π−arcsin(22​(3​−1)​)+2πn−4π​
22​(−1+3​)​=2​−1+3​​
22​(−1+3​)​
Apply radical rule: na​=an1​2​=221​=2221​(3​−1)​
Apply exponent rule: xbxa​=xb−a1​21221​​=21−21​1​=21−21​−1+3​​
Subtract the numbers: 1−21​=21​=221​−1+3​​
Apply radical rule: an1​=na​221​=2​=2​−1+3​​
=π−arcsin(2​3​−1​)+2πn−4π​
Could not simplify further=π−arcsin(2​3​−1​)+2πn−4π​
x=π−arcsin(2​−1+3​​)+2πn−4π​
x=π−arcsin(2​−1+3​​)+2πn−4π​
x=π−arcsin(2​−1+3​​)+2πn−4π​
x=arcsin(2​−1+3​​)+2πn−4π​,x=π−arcsin(2​−1+3​​)+2πn−4π​
Show solutions in decimal formx=0.54408…+2πn−4π​,x=π−0.54408…+2πn−4π​

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

3=7cos(pi/3 t)cos^2(2x)=cos(4x)solvefor θ,tan(2θ)=-13cos(z+1.2)=21/2 =sqrt(3/2)*cos(x)

Frequently Asked Questions (FAQ)

  • What is the general solution for 1+cos(x)=sqrt(3)-sin(x) ?

    The general solution for 1+cos(x)=sqrt(3)-sin(x) is x=0.54408…+2pin-pi/4 ,x=pi-0.54408…+2pin-pi/4
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024