Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

arccot(x)+arccot(1+x)= pi/4

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

arccot(x)+arccot(1+x)=4π​

Solution

x=2
Solution steps
arccot(x)+arccot(1+x)=4π​
Rewrite using trig identities
arccot(x)+arccot(1+x)
Use the Sum to Product identity: arccot(s)+arccot(t)=arccot(t+sst−1​)=arccot(1+x+xx(1+x)−1​)
arccot(1+x+xx(1+x)−1​)=4π​
Apply trig inverse properties
arccot(1+x+xx(1+x)−1​)=4π​
arccot(x)=a⇒x=cot(a)1+x+xx(1+x)−1​=cot(4π​)
cot(4π​)=1
cot(4π​)
Use the following trivial identity:cot(4π​)=1
cot(4π​)
cot(x) periodicity table with πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cot(x)∓∞3​133​​0−33​​−1−3​​​
=1
=1
1+x+xx(1+x)−1​=1
1+x+xx(1+x)−1​=1
Solve 1+x+xx(1+x)−1​=1:x=2,x=−1
1+x+xx(1+x)−1​=1
Simplify 1+x+xx(1+x)−1​:1+2xx(1+x)−1​
1+x+xx(1+x)−1​
Add similar elements: x+x=2x=1+2xx(x+1)−1​
1+2xx(1+x)−1​=1
Multiply both sides by 1+2x
1+2xx(1+x)−1​=1
Multiply both sides by 1+2x1+2xx(1+x)−1​(1+2x)=1⋅(1+2x)
Simplify
1+2xx(1+x)−1​(1+2x)=1⋅(1+2x)
Simplify 1+2xx(1+x)−1​(1+2x):x(1+x)−1
1+2xx(1+x)−1​(1+2x)
Multiply fractions: a⋅cb​=ca⋅b​=1+2x(x(1+x)−1)(1+2x)​
Cancel the common factor: 1+2x=x(1+x)−1
Simplify 1⋅(1+2x):1+2x
1⋅(1+2x)
Multiply: 1⋅(1+2x)=(1+2x)=(1+2x)
Remove parentheses: (a)=a=1+2x
x(1+x)−1=1+2x
x(1+x)−1=1+2x
x(1+x)−1=1+2x
Solve x(1+x)−1=1+2x:x=2,x=−1
x(1+x)−1=1+2x
Expand x(1+x)−1:x+x2−1
x(1+x)−1
Expand x(1+x):x+x2
x(1+x)
Apply the distributive law: a(b+c)=ab+aca=x,b=1,c=x=x⋅1+xx
=1⋅x+xx
Simplify 1⋅x+xx:x+x2
1⋅x+xx
1⋅x=x
1⋅x
Multiply: 1⋅x=x=x
xx=x2
xx
Apply exponent rule: ab⋅ac=ab+cxx=x1+1=x1+1
Add the numbers: 1+1=2=x2
=x+x2
=x+x2
=x+x2−1
x+x2−1=1+2x
Move 2xto the left side
x+x2−1=1+2x
Subtract 2x from both sidesx+x2−1−2x=1+2x−2x
Simplifyx2−x−1=1
x2−x−1=1
Move 1to the left side
x2−x−1=1
Subtract 1 from both sidesx2−x−1−1=1−1
Simplifyx2−x−2=0
x2−x−2=0
Solve with the quadratic formula
x2−x−2=0
Quadratic Equation Formula:
For a=1,b=−1,c=−2x1,2​=2⋅1−(−1)±(−1)2−4⋅1⋅(−2)​​
x1,2​=2⋅1−(−1)±(−1)2−4⋅1⋅(−2)​​
(−1)2−4⋅1⋅(−2)​=3
(−1)2−4⋅1⋅(−2)​
Apply rule −(−a)=a=(−1)2+4⋅1⋅2​
(−1)2=1
(−1)2
Apply exponent rule: (−a)n=an,if n is even(−1)2=12=12
Apply rule 1a=1=1
4⋅1⋅2=8
4⋅1⋅2
Multiply the numbers: 4⋅1⋅2=8=8
=1+8​
Add the numbers: 1+8=9=9​
Factor the number: 9=32=32​
Apply radical rule: nan​=a32​=3=3
x1,2​=2⋅1−(−1)±3​
Separate the solutionsx1​=2⋅1−(−1)+3​,x2​=2⋅1−(−1)−3​
x=2⋅1−(−1)+3​:2
2⋅1−(−1)+3​
Apply rule −(−a)=a=2⋅11+3​
Add the numbers: 1+3=4=2⋅14​
Multiply the numbers: 2⋅1=2=24​
Divide the numbers: 24​=2=2
x=2⋅1−(−1)−3​:−1
2⋅1−(−1)−3​
Apply rule −(−a)=a=2⋅11−3​
Subtract the numbers: 1−3=−2=2⋅1−2​
Multiply the numbers: 2⋅1=2=2−2​
Apply the fraction rule: b−a​=−ba​=−22​
Apply rule aa​=1=−1
The solutions to the quadratic equation are:x=2,x=−1
x=2,x=−1
Verify Solutions
Find undefined (singularity) points:x=−21​
Take the denominator(s) of 1+x+xx(1+x)−1​ and compare to zero
Solve 1+x+x=0:x=−21​
1+x+x=0
Add similar elements: x+x=2x1+2x=0
Move 1to the right side
1+2x=0
Subtract 1 from both sides1+2x−1=0−1
Simplify2x=−1
2x=−1
Divide both sides by 2
2x=−1
Divide both sides by 222x​=2−1​
Simplifyx=−21​
x=−21​
The following points are undefinedx=−21​
Combine undefined points with solutions:
x=2,x=−1
x=2,x=−1
Verify solutions by plugging them into the original equation
Check the solutions by plugging them into arccot(x)+arccot(1+x)=4π​
Remove the ones that don't agree with the equation.
Check the solution 2:True
2
Plug in n=12
For arccot(x)+arccot(1+x)=4π​plug inx=2arccot(2)+arccot(1+2)=4π​
Refine0.78539…=0.78539…
⇒True
Check the solution −1:False
−1
Plug in n=1−1
For arccot(x)+arccot(1+x)=4π​plug inx=−1arccot(−1)+arccot(1−1)=4π​
Refine3.92699…=0.78539…
⇒False
x=2

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

arcsin(x-0.355)=0.489cos(pi/2-x)= 4/56=10cos(4*o)solvefor y,x=sin(1/2 y)sin^2(θ)-sin(θ)=2

Frequently Asked Questions (FAQ)

  • What is the general solution for arccot(x)+arccot(1+x)= pi/4 ?

    The general solution for arccot(x)+arccot(1+x)= pi/4 is x=2
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024