Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

10sin(20t-pi/6)=8

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

10sin(20t−6π​)=8

Solution

t=10πn​+120π​+200.92729…​,t=20π​+120π​+10πn​−200.92729…​
+1
Degrees
t=4.15650…∘+18∘n,t=7.84349…∘+18∘n
Solution steps
10sin(20t−6π​)=8
Divide both sides by 10
10sin(20t−6π​)=8
Divide both sides by 101010sin(20t−6π​)​=108​
Simplifysin(20t−6π​)=54​
sin(20t−6π​)=54​
Apply trig inverse properties
sin(20t−6π​)=54​
General solutions for sin(20t−6π​)=54​sin(x)=a⇒x=arcsin(a)+2πn,x=π−arcsin(a)+2πn20t−6π​=arcsin(54​)+2πn,20t−6π​=π−arcsin(54​)+2πn
20t−6π​=arcsin(54​)+2πn,20t−6π​=π−arcsin(54​)+2πn
Solve 20t−6π​=arcsin(54​)+2πn:t=10πn​+120π​+20arcsin(54​)​
20t−6π​=arcsin(54​)+2πn
Move 6π​to the right side
20t−6π​=arcsin(54​)+2πn
Add 6π​ to both sides20t−6π​+6π​=arcsin(54​)+2πn+6π​
Simplify20t=arcsin(54​)+2πn+6π​
20t=arcsin(54​)+2πn+6π​
Divide both sides by 20
20t=arcsin(54​)+2πn+6π​
Divide both sides by 202020t​=20arcsin(54​)​+202πn​+206π​​
Simplify
2020t​=20arcsin(54​)​+202πn​+206π​​
Simplify 2020t​:t
2020t​
Divide the numbers: 2020​=1=t
Simplify 20arcsin(54​)​+202πn​+206π​​:10πn​+120π​+20arcsin(54​)​
20arcsin(54​)​+202πn​+206π​​
Group like terms=202πn​+206π​​+20arcsin(54​)​
202πn​=10πn​
202πn​
Cancel the common factor: 2=10πn​
206π​​=120π​
206π​​
Apply the fraction rule: acb​​=c⋅ab​=6⋅20π​
Multiply the numbers: 6⋅20=120=120π​
=10πn​+120π​+20arcsin(54​)​
t=10πn​+120π​+20arcsin(54​)​
t=10πn​+120π​+20arcsin(54​)​
t=10πn​+120π​+20arcsin(54​)​
Solve 20t−6π​=π−arcsin(54​)+2πn:t=20π​+120π​+10πn​−20arcsin(54​)​
20t−6π​=π−arcsin(54​)+2πn
Move 6π​to the right side
20t−6π​=π−arcsin(54​)+2πn
Add 6π​ to both sides20t−6π​+6π​=π−arcsin(54​)+2πn+6π​
Simplify20t=π−arcsin(54​)+2πn+6π​
20t=π−arcsin(54​)+2πn+6π​
Divide both sides by 20
20t=π−arcsin(54​)+2πn+6π​
Divide both sides by 202020t​=20π​−20arcsin(54​)​+202πn​+206π​​
Simplify
2020t​=20π​−20arcsin(54​)​+202πn​+206π​​
Simplify 2020t​:t
2020t​
Divide the numbers: 2020​=1=t
Simplify 20π​−20arcsin(54​)​+202πn​+206π​​:20π​+120π​+10πn​−20arcsin(54​)​
20π​−20arcsin(54​)​+202πn​+206π​​
Group like terms=20π​+202πn​+206π​​−20arcsin(54​)​
202πn​=10πn​
202πn​
Cancel the common factor: 2=10πn​
206π​​=120π​
206π​​
Apply the fraction rule: acb​​=c⋅ab​=6⋅20π​
Multiply the numbers: 6⋅20=120=120π​
=20π​+10πn​+120π​−20arcsin(54​)​
Group like terms=20π​+120π​+10πn​−20arcsin(54​)​
t=20π​+120π​+10πn​−20arcsin(54​)​
t=20π​+120π​+10πn​−20arcsin(54​)​
t=20π​+120π​+10πn​−20arcsin(54​)​
t=10πn​+120π​+20arcsin(54​)​,t=20π​+120π​+10πn​−20arcsin(54​)​
Show solutions in decimal formt=10πn​+120π​+200.92729…​,t=20π​+120π​+10πn​−200.92729…​

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

solvefor x,-cos(x)=0tan(θ)=sin(2θ)sin(θ)+cos(θ)=0.463cos(x)-4sin(x)=5sqrt(2)cos(x-pi/4)-1=0
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024