Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

solvefor x,sin(y/x)+cos(x/y)=0

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

solve for x,sin(xy​)+cos(yx​)=0

Solution

x=−4−πy−4πny+(πy+4πny)2+16y2​​,x=−4−πy−4πny−(πy+4πny)2+16y2​​,x=4−πy−4πny+(πy+4πny)2−16y2​​,x=4−πy−4πny−(πy+4πny)2−16y2​​
Solution steps
sin(xy​)+cos(yx​)=0
Subtract sin(xy​) from both sidescos(yx​)=−sin(xy​)
Rewrite using trig identities
cos(yx​)=−sin(xy​)
Use the following identity: −sin(x)=sin(−x)cos(yx​)=sin(−xy​)
Use the following identity: cos(x)=sin(2π​−x)sin(2π​−yx​)=sin(−xy​)
sin(2π​−yx​)=sin(−xy​)
Apply trig inverse properties
sin(2π​−yx​)=sin(−(xy​))
sin(x)=sin(y)⇒x=y+2πn,x=π−y+2πn−xy​=2π​−yx​+2πn,−xy​=π−(2π​−yx​)+2πn
−xy​=2π​−yx​+2πn,−xy​=π−(2π​−yx​)+2πn
−(xy​)=2π​−yx​+2πn:x=−4−πy−4πny+(πy+4πny)2+16y2​​,x=−4−πy−4πny−(πy+4πny)2+16y2​​
−(xy​)=2π​−yx​+2πn
Multiply by LCM
−(xy​)=2π​−yx​+2πn
Simplify −(xy​):−xy​
−(xy​)
Remove parentheses: (a)=a=−xy​
−xy​=2π​−yx​+2πn
Find Least Common Multiplier of x,2,y:2xy
x,2,y
Lowest Common Multiplier (LCM)
Compute an expression comprised of factors that appear in at least one of the factored expressions=2xy
Multiply by LCM=2xy−xy​⋅2xy=2π​⋅2xy−yx​⋅2xy+2πn⋅2xy
Simplify
−xy​⋅2xy=2π​⋅2xy−yx​⋅2xy+2πn⋅2xy
Simplify −xy​⋅2xy:−2y2
−xy​⋅2xy
Multiply fractions: a⋅cb​=ca⋅b​=−xy⋅2xy​
Cancel the common factor: x=−y⋅2y
Apply exponent rule: ab⋅ac=ab+cyy=y1+1=−2y1+1
Add the numbers: 1+1=2=−2y2
Simplify 2π​⋅2xy:πxy
2π​⋅2xy
Multiply fractions: a⋅cb​=ca⋅b​=22π​xy
Cancel the common factor: 2=xyπ
Simplify −yx​⋅2xy:−2x2
−yx​⋅2xy
Multiply fractions: a⋅cb​=ca⋅b​=−yx⋅2xy​
Cancel the common factor: y=−x⋅2x
Apply exponent rule: ab⋅ac=ab+cxx=x1+1=−2x1+1
Add the numbers: 1+1=2=−2x2
Simplify 2πn⋅2xy:4πnxy
2πn⋅2xy
Multiply the numbers: 2⋅2=4=4πnxy
−2y2=πxy−2x2+4πnxy
−2y2=πxy−2x2+4πnxy
−2y2=πxy−2x2+4πnxy
Solve −2y2=πxy−2x2+4πnxy:x=−4−πy−4πny+(πy+4πny)2+16y2​​,x=−4−πy−4πny−(πy+4πny)2+16y2​​
−2y2=πxy−2x2+4πnxy
Switch sidesπxy−2x2+4πnxy=−2y2
Move 2y2to the left side
πxy−2x2+4πnxy=−2y2
Add 2y2 to both sidesπxy−2x2+4πnxy+2y2=−2y2+2y2
Simplifyπxy−2x2+4πnxy+2y2=0
πxy−2x2+4πnxy+2y2=0
Write in the standard form ax2+bx+c=0−2x2+(πy+4πny)x+2y2=0
Solve with the quadratic formula
−2x2+(πy+4πny)x+2y2=0
Quadratic Equation Formula:
For a=−2,b=πy+4πny,c=2y2x1,2​=2(−2)−(πy+4πny)±(πy+4πny)2−4(−2)⋅2y2​​
x1,2​=2(−2)−(πy+4πny)±(πy+4πny)2−4(−2)⋅2y2​​
Simplify (πy+4πny)2−4(−2)⋅2y2​:(πy+4πny)2+16y2​
(πy+4πny)2−4(−2)⋅2y2​
Apply rule −(−a)=a=(πy+4πny)2+4⋅2⋅2y2​
Multiply the numbers: 4⋅2⋅2=16=(πy+4πny)2+16y2​
x1,2​=2(−2)−(πy+4πny)±(πy+4πny)2+16y2​​
Separate the solutionsx1​=2(−2)−(πy+4πny)+(πy+4πny)2+16y2​​,x2​=2(−2)−(πy+4πny)−(πy+4πny)2+16y2​​
x=2(−2)−(πy+4πny)+(πy+4πny)2+16y2​​:−4−πy−4πny+(πy+4πny)2+16y2​​
2(−2)−(πy+4πny)+(πy+4πny)2+16y2​​
Remove parentheses: (−a)=−a=−2⋅2−(πy+4πny)+(πy+4πny)2+16y2​​
Multiply the numbers: 2⋅2=4=−4−(πy+4πny)+16y2+(πy+4πny)2​​
Apply the fraction rule: −ba​=−ba​=−4−(πy+4πny)+(πy+4πny)2+16y2​​
−(πy+4πny):−πy−4πny
−(πy+4πny)
Distribute parentheses=−πy−4πny
Apply minus-plus rules+(−a)=−a=−πy−4πny
=−4−πy−4πny+16y2+(πy+4πny)2​​
=−4−πy−4πny+(πy+4πny)2+16y2​​
x=2(−2)−(πy+4πny)−(πy+4πny)2+16y2​​:−4−πy−4πny−(πy+4πny)2+16y2​​
2(−2)−(πy+4πny)−(πy+4πny)2+16y2​​
Remove parentheses: (−a)=−a=−2⋅2−(πy+4πny)−(πy+4πny)2+16y2​​
Multiply the numbers: 2⋅2=4=−4−(πy+4πny)−16y2+(πy+4πny)2​​
Apply the fraction rule: −ba​=−ba​=−4−(πy+4πny)−(πy+4πny)2+16y2​​
−(πy+4πny):−πy−4πny
−(πy+4πny)
Distribute parentheses=−πy−4πny
Apply minus-plus rules+(−a)=−a=−πy−4πny
=−4−πy−4πny−16y2+(πy+4πny)2​​
=−4−πy−4πny−(πy+4πny)2+16y2​​
The solutions to the quadratic equation are:x=−4−πy−4πny+(πy+4πny)2+16y2​​,x=−4−πy−4πny−(πy+4πny)2+16y2​​
x=−4−πy−4πny+(πy+4πny)2+16y2​​,x=−4−πy−4πny−(πy+4πny)2+16y2​​
−(xy​)=π−(2π​−yx​)+2πn:x=4−πy−4πny+(πy+4πny)2−16y2​​,x=4−πy−4πny−(πy+4πny)2−16y2​​
−(xy​)=π−(2π​−yx​)+2πn
Multiply by LCM
−(xy​)=π−(2π​−yx​)+2πn
Simplify
−(xy​)=π−(2π​−yx​)+2πn
Simplify −(xy​):−xy​
−(xy​)
Remove parentheses: (a)=a=−xy​
Simplify −(2π​−yx​):−2π​+yx​
−(2π​−yx​)
Distribute parentheses=−2π​−(−yx​)
Apply minus-plus rules−(−a)=a,−(a)=−a=−2π​+yx​
−xy​=π−2π​+yx​+2πn
−xy​=π−2π​+yx​+2πn
Find Least Common Multiplier of x,2,y:2xy
x,2,y
Lowest Common Multiplier (LCM)
Compute an expression comprised of factors that appear in at least one of the factored expressions=2xy
Multiply by LCM=2xy−xy​⋅2xy=π2xy−2π​⋅2xy+yx​⋅2xy+2πn⋅2xy
Simplify
−xy​⋅2xy=π2xy−2π​⋅2xy+yx​⋅2xy+2πn⋅2xy
Simplify −xy​⋅2xy:−2y2
−xy​⋅2xy
Multiply fractions: a⋅cb​=ca⋅b​=−xy⋅2xy​
Cancel the common factor: x=−y⋅2y
Apply exponent rule: ab⋅ac=ab+cyy=y1+1=−2y1+1
Add the numbers: 1+1=2=−2y2
Simplify −2π​⋅2xy:−πxy
−2π​⋅2xy
Multiply fractions: a⋅cb​=ca⋅b​=−22π​xy
Cancel the common factor: 2=−xyπ
Simplify yx​⋅2xy:2x2
yx​⋅2xy
Multiply fractions: a⋅cb​=ca⋅b​=yx⋅2xy​
Cancel the common factor: y=x⋅2x
Apply exponent rule: ab⋅ac=ab+cxx=x1+1=2x1+1
Add the numbers: 1+1=2=2x2
Simplify 2πn⋅2xy:4πnxy
2πn⋅2xy
Multiply the numbers: 2⋅2=4=4πnxy
−2y2=π2xy−πxy+2x2+4πnxy
Simplify π2xy−πxy+2x2+4πnxy:πxy+2x2+4πnxy
π2xy−πxy+2x2+4πnxy
Add similar elements: 2πxy−πxy=πxy=πxy+2x2+4πnxy
−2y2=πxy+2x2+4πnxy
−2y2=πxy+2x2+4πnxy
−2y2=πxy+2x2+4πnxy
Solve −2y2=πxy+2x2+4πnxy:x=4−πy−4πny+(πy+4πny)2−16y2​​,x=4−πy−4πny−(πy+4πny)2−16y2​​
−2y2=πxy+2x2+4πnxy
Switch sidesπxy+2x2+4πnxy=−2y2
Move 2y2to the left side
πxy+2x2+4πnxy=−2y2
Add 2y2 to both sidesπxy+2x2+4πnxy+2y2=−2y2+2y2
Simplifyπxy+2x2+4πnxy+2y2=0
πxy+2x2+4πnxy+2y2=0
Write in the standard form ax2+bx+c=02x2+(πy+4πny)x+2y2=0
Solve with the quadratic formula
2x2+(πy+4πny)x+2y2=0
Quadratic Equation Formula:
For a=2,b=πy+4πny,c=2y2x1,2​=2⋅2−(πy+4πny)±(πy+4πny)2−4⋅2⋅2y2​​
x1,2​=2⋅2−(πy+4πny)±(πy+4πny)2−4⋅2⋅2y2​​
Simplify (πy+4πny)2−4⋅2⋅2y2​:(πy+4πny)2−16y2​
(πy+4πny)2−4⋅2⋅2y2​
Multiply the numbers: 4⋅2⋅2=16=(πy+4πny)2−16y2​
x1,2​=2⋅2−(πy+4πny)±(πy+4πny)2−16y2​​
Separate the solutionsx1​=2⋅2−(πy+4πny)+(πy+4πny)2−16y2​​,x2​=2⋅2−(πy+4πny)−(πy+4πny)2−16y2​​
x=2⋅2−(πy+4πny)+(πy+4πny)2−16y2​​:4−πy−4πny+(πy+4πny)2−16y2​​
2⋅2−(πy+4πny)+(πy+4πny)2−16y2​​
Multiply the numbers: 2⋅2=4=4−(πy+4πny)+−16y2+(πy+4πny)2​​
−(πy+4πny):−πy−4πny
−(πy+4πny)
Distribute parentheses=−πy−4πny
Apply minus-plus rules+(−a)=−a=−πy−4πny
=4−πy−4πny+−16y2+(πy+4πny)2​​
=4−πy−4πny+(πy+4πny)2−16y2​​
x=2⋅2−(πy+4πny)−(πy+4πny)2−16y2​​:4−πy−4πny−(πy+4πny)2−16y2​​
2⋅2−(πy+4πny)−(πy+4πny)2−16y2​​
Multiply the numbers: 2⋅2=4=4−(πy+4πny)−−16y2+(πy+4πny)2​​
−(πy+4πny):−πy−4πny
−(πy+4πny)
Distribute parentheses=−πy−4πny
Apply minus-plus rules+(−a)=−a=−πy−4πny
=4−πy−4πny−−16y2+(πy+4πny)2​​
=4−πy−4πny−(πy+4πny)2−16y2​​
The solutions to the quadratic equation are:x=4−πy−4πny+(πy+4πny)2−16y2​​,x=4−πy−4πny−(πy+4πny)2−16y2​​
x=4−πy−4πny+(πy+4πny)2−16y2​​,x=4−πy−4πny−(πy+4πny)2−16y2​​
x=−4−πy−4πny+(πy+4πny)2+16y2​​,x=−4−πy−4πny−(πy+4πny)2+16y2​​,x=4−πy−4πny+(πy+4πny)2−16y2​​,x=4−πy−4πny−(πy+4πny)2−16y2​​

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

2sin^3(x)=sin^3(x)solvefor θ,y=4sin(θ)cos^2(t)-sin^2(t)=-1-a^2c_{1}cos(ax)-a^2c_{2}sin(ax)=010=-12sin(x)+1.8cos(x)

Frequently Asked Questions (FAQ)

  • What is the general solution for solvefor x,sin(y/x)+cos(x/y)=0 ?

    The general solution for solvefor x,sin(y/x)+cos(x/y)=0 is
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024