Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

6sin^2(x)-sin(x)cos(x)-2cos^2(x)=0

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

6sin2(x)−sin(x)cos(x)−2cos2(x)=0

Solution

x=−0.46364…+πn,x=0.58800…+πn
+1
Degrees
x=−26.56505…∘+180∘n,x=33.69006…∘+180∘n
Solution steps
6sin2(x)−sin(x)cos(x)−2cos2(x)=0
Factor 6sin2(x)−sin(x)cos(x)−2cos2(x):(2sin(x)+cos(x))(3sin(x)−2cos(x))
6sin2(x)−sin(x)cos(x)−2cos2(x)
Break the expression into groups
6sin2(x)−sin(x)cos(x)−2cos2(x)
Definition
Factors of 12:1,2,3,4,6,12
12
Divisors (Factors)
Find the Prime factors of 12:2,2,3
12
12divides by 212=6⋅2=2⋅6
6divides by 26=3⋅2=2⋅2⋅3
2,3 are all prime numbers, therefore no further factorization is possible=2⋅2⋅3
Multiply the prime factors of 12:4,6
2⋅2=42⋅3=6
4,6
4,6
Add the prime factors: 2,3
Add 1 and the number 12 itself1,12
The factors of 121,2,3,4,6,12
Negative factors of 12:−1,−2,−3,−4,−6,−12
Multiply the factors by −1 to get the negative factors−1,−2,−3,−4,−6,−12
For every two factors such that u∗v=−12,check if u+v=−1
Check u=1,v=−12:u∗v=−12,u+v=−11⇒FalseCheck u=2,v=−6:u∗v=−12,u+v=−4⇒False
u=3,v=−4
Group into (ax2+uxy)+(vxy+cy2)(6sin2(x)+3sin(x)cos(x))+(−4sin(x)cos(x)−2cos2(x))
=(6sin2(x)+3sin(x)cos(x))+(−4sin(x)cos(x)−2cos2(x))
Factor out 3sin(x)from 6sin2(x)+3sin(x)cos(x):3sin(x)(2sin(x)+cos(x))
6sin2(x)+3sin(x)cos(x)
Apply exponent rule: ab+c=abacsin2(x)=sin(x)sin(x)=6sin(x)sin(x)+3sin(x)cos(x)
Rewrite 6 as 2⋅3=2⋅3sin(x)sin(x)+3sin(x)cos(x)
Factor out common term 3sin(x)=3sin(x)(2sin(x)+cos(x))
Factor out −2cos(x)from −4sin(x)cos(x)−2cos2(x):−2cos(x)(2sin(x)+cos(x))
−4sin(x)cos(x)−2cos2(x)
Apply exponent rule: ab+c=abaccos2(x)=cos(x)cos(x)=−4sin(x)cos(x)−2cos(x)cos(x)
Rewrite −4 as 2⋅2=2⋅2sin(x)cos(x)−2cos(x)cos(x)
Factor out common term −2cos(x)=−2cos(x)(2sin(x)+cos(x))
=3sin(x)(2sin(x)+cos(x))−2cos(x)(2sin(x)+cos(x))
Factor out common term 2sin(x)+cos(x)=(2sin(x)+cos(x))(3sin(x)−2cos(x))
(2sin(x)+cos(x))(3sin(x)−2cos(x))=0
Solving each part separately2sin(x)+cos(x)=0or3sin(x)−2cos(x)=0
2sin(x)+cos(x)=0:x=arctan(−21​)+πn
2sin(x)+cos(x)=0
Rewrite using trig identities
2sin(x)+cos(x)=0
Divide both sides by cos(x),cos(x)=0cos(x)2sin(x)+cos(x)​=cos(x)0​
Simplifycos(x)2sin(x)​+1=0
Use the basic trigonometric identity: cos(x)sin(x)​=tan(x)2tan(x)+1=0
2tan(x)+1=0
Move 1to the right side
2tan(x)+1=0
Subtract 1 from both sides2tan(x)+1−1=0−1
Simplify2tan(x)=−1
2tan(x)=−1
Divide both sides by 2
2tan(x)=−1
Divide both sides by 222tan(x)​=2−1​
Simplifytan(x)=−21​
tan(x)=−21​
Apply trig inverse properties
tan(x)=−21​
General solutions for tan(x)=−21​tan(x)=−a⇒x=arctan(−a)+πnx=arctan(−21​)+πn
x=arctan(−21​)+πn
3sin(x)−2cos(x)=0:x=arctan(32​)+πn
3sin(x)−2cos(x)=0
Rewrite using trig identities
3sin(x)−2cos(x)=0
Divide both sides by cos(x),cos(x)=0cos(x)3sin(x)−2cos(x)​=cos(x)0​
Simplifycos(x)3sin(x)​−2=0
Use the basic trigonometric identity: cos(x)sin(x)​=tan(x)3tan(x)−2=0
3tan(x)−2=0
Move 2to the right side
3tan(x)−2=0
Add 2 to both sides3tan(x)−2+2=0+2
Simplify3tan(x)=2
3tan(x)=2
Divide both sides by 3
3tan(x)=2
Divide both sides by 333tan(x)​=32​
Simplifytan(x)=32​
tan(x)=32​
Apply trig inverse properties
tan(x)=32​
General solutions for tan(x)=32​tan(x)=a⇒x=arctan(a)+πnx=arctan(32​)+πn
x=arctan(32​)+πn
Combine all the solutionsx=arctan(−21​)+πn,x=arctan(32​)+πn
Show solutions in decimal formx=−0.46364…+πn,x=0.58800…+πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

tan(θ)=(20(9.8))/(25)solvefor t,0=8sin((pit)/(12))+322sin^2(x)+sin(x)-1=0,0<= x<2picos(2pix)*2pi+2pi=0solvefor x,sin(y)=ycos(x)

Frequently Asked Questions (FAQ)

  • What is the general solution for 6sin^2(x)-sin(x)cos(x)-2cos^2(x)=0 ?

    The general solution for 6sin^2(x)-sin(x)cos(x)-2cos^2(x)=0 is x=-0.46364…+pin,x=0.58800…+pin
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024