Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

3cot(x)=2sin(x)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

3cot(x)=2sin(x)

Solution

x=3π​+2πn,x=35π​+2πn
+1
Degrees
x=60∘+360∘n,x=300∘+360∘n
Solution steps
3cot(x)=2sin(x)
Subtract 2sin(x) from both sides3cot(x)−2sin(x)=0
Express with sin, cos3⋅sin(x)cos(x)​−2sin(x)=0
Simplify 3⋅sin(x)cos(x)​−2sin(x):sin(x)3cos(x)−2sin2(x)​
3⋅sin(x)cos(x)​−2sin(x)
Multiply 3⋅sin(x)cos(x)​:sin(x)3cos(x)​
3⋅sin(x)cos(x)​
Multiply fractions: a⋅cb​=ca⋅b​=sin(x)cos(x)⋅3​
=sin(x)3cos(x)​−2sin(x)
Convert element to fraction: 2sin(x)=sin(x)2sin(x)sin(x)​=sin(x)cos(x)⋅3​−sin(x)2sin(x)sin(x)​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=sin(x)cos(x)⋅3−2sin(x)sin(x)​
cos(x)⋅3−2sin(x)sin(x)=3cos(x)−2sin2(x)
cos(x)⋅3−2sin(x)sin(x)
2sin(x)sin(x)=2sin2(x)
2sin(x)sin(x)
Apply exponent rule: ab⋅ac=ab+csin(x)sin(x)=sin1+1(x)=2sin1+1(x)
Add the numbers: 1+1=2=2sin2(x)
=3cos(x)−2sin2(x)
=sin(x)3cos(x)−2sin2(x)​
sin(x)3cos(x)−2sin2(x)​=0
g(x)f(x)​=0⇒f(x)=03cos(x)−2sin2(x)=0
Add 2sin2(x) to both sides3cos(x)=2sin2(x)
Square both sides(3cos(x))2=(2sin2(x))2
Subtract (2sin2(x))2 from both sides9cos2(x)−4sin4(x)=0
Factor 9cos2(x)−4sin4(x):(3cos(x)+2sin2(x))(3cos(x)−2sin2(x))
9cos2(x)−4sin4(x)
Rewrite 9cos2(x)−4sin4(x) as (3cos(x))2−(2sin2(x))2
9cos2(x)−4sin4(x)
Rewrite 9 as 32=32cos2(x)−4sin4(x)
Rewrite 4 as 22=32cos2(x)−22sin4(x)
Apply exponent rule: abc=(ab)csin4(x)=(sin2(x))2=32cos2(x)−22(sin2(x))2
Apply exponent rule: ambm=(ab)m32cos2(x)=(3cos(x))2=(3cos(x))2−22(sin2(x))2
Apply exponent rule: ambm=(ab)m22(sin2(x))2=(2sin2(x))2=(3cos(x))2−(2sin2(x))2
=(3cos(x))2−(2sin2(x))2
Apply Difference of Two Squares Formula: x2−y2=(x+y)(x−y)(3cos(x))2−(2sin2(x))2=(3cos(x)+2sin2(x))(3cos(x)−2sin2(x))=(3cos(x)+2sin2(x))(3cos(x)−2sin2(x))
(3cos(x)+2sin2(x))(3cos(x)−2sin2(x))=0
Solving each part separately3cos(x)+2sin2(x)=0or3cos(x)−2sin2(x)=0
3cos(x)+2sin2(x)=0:x=32π​+2πn,x=34π​+2πn
3cos(x)+2sin2(x)=0
Rewrite using trig identities
2sin2(x)+3cos(x)
Use the Pythagorean identity: cos2(x)+sin2(x)=1sin2(x)=1−cos2(x)=2(1−cos2(x))+3cos(x)
(1−cos2(x))⋅2+3cos(x)=0
Solve by substitution
(1−cos2(x))⋅2+3cos(x)=0
Let: cos(x)=u(1−u2)⋅2+3u=0
(1−u2)⋅2+3u=0:u=−21​,u=2
(1−u2)⋅2+3u=0
Expand (1−u2)⋅2+3u:2−2u2+3u
(1−u2)⋅2+3u
=2(1−u2)+3u
Expand 2(1−u2):2−2u2
2(1−u2)
Apply the distributive law: a(b−c)=ab−aca=2,b=1,c=u2=2⋅1−2u2
Multiply the numbers: 2⋅1=2=2−2u2
=2−2u2+3u
2−2u2+3u=0
Write in the standard form ax2+bx+c=0−2u2+3u+2=0
Solve with the quadratic formula
−2u2+3u+2=0
Quadratic Equation Formula:
For a=−2,b=3,c=2u1,2​=2(−2)−3±32−4(−2)⋅2​​
u1,2​=2(−2)−3±32−4(−2)⋅2​​
32−4(−2)⋅2​=5
32−4(−2)⋅2​
Apply rule −(−a)=a=32+4⋅2⋅2​
Multiply the numbers: 4⋅2⋅2=16=32+16​
32=9=9+16​
Add the numbers: 9+16=25=25​
Factor the number: 25=52=52​
Apply radical rule: 52​=5=5
u1,2​=2(−2)−3±5​
Separate the solutionsu1​=2(−2)−3+5​,u2​=2(−2)−3−5​
u=2(−2)−3+5​:−21​
2(−2)−3+5​
Remove parentheses: (−a)=−a=−2⋅2−3+5​
Add/Subtract the numbers: −3+5=2=−2⋅22​
Multiply the numbers: 2⋅2=4=−42​
Apply the fraction rule: −ba​=−ba​=−42​
Cancel the common factor: 2=−21​
u=2(−2)−3−5​:2
2(−2)−3−5​
Remove parentheses: (−a)=−a=−2⋅2−3−5​
Subtract the numbers: −3−5=−8=−2⋅2−8​
Multiply the numbers: 2⋅2=4=−4−8​
Apply the fraction rule: −b−a​=ba​=48​
Divide the numbers: 48​=2=2
The solutions to the quadratic equation are:u=−21​,u=2
Substitute back u=cos(x)cos(x)=−21​,cos(x)=2
cos(x)=−21​,cos(x)=2
cos(x)=−21​:x=32π​+2πn,x=34π​+2πn
cos(x)=−21​
General solutions for cos(x)=−21​
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
x=32π​+2πn,x=34π​+2πn
x=32π​+2πn,x=34π​+2πn
cos(x)=2:No Solution
cos(x)=2
−1≤cos(x)≤1NoSolution
Combine all the solutionsx=32π​+2πn,x=34π​+2πn
3cos(x)−2sin2(x)=0:x=3π​+2πn,x=35π​+2πn
3cos(x)−2sin2(x)=0
Rewrite using trig identities
−2sin2(x)+3cos(x)
Use the Pythagorean identity: cos2(x)+sin2(x)=1sin2(x)=1−cos2(x)=−2(1−cos2(x))+3cos(x)
−(1−cos2(x))⋅2+3cos(x)=0
Solve by substitution
−(1−cos2(x))⋅2+3cos(x)=0
Let: cos(x)=u−(1−u2)⋅2+3u=0
−(1−u2)⋅2+3u=0:u=21​,u=−2
−(1−u2)⋅2+3u=0
Expand −(1−u2)⋅2+3u:−2+2u2+3u
−(1−u2)⋅2+3u
=−2(1−u2)+3u
Expand −2(1−u2):−2+2u2
−2(1−u2)
Apply the distributive law: a(b−c)=ab−aca=−2,b=1,c=u2=−2⋅1−(−2)u2
Apply minus-plus rules−(−a)=a=−2⋅1+2u2
Multiply the numbers: 2⋅1=2=−2+2u2
=−2+2u2+3u
−2+2u2+3u=0
Write in the standard form ax2+bx+c=02u2+3u−2=0
Solve with the quadratic formula
2u2+3u−2=0
Quadratic Equation Formula:
For a=2,b=3,c=−2u1,2​=2⋅2−3±32−4⋅2(−2)​​
u1,2​=2⋅2−3±32−4⋅2(−2)​​
32−4⋅2(−2)​=5
32−4⋅2(−2)​
Apply rule −(−a)=a=32+4⋅2⋅2​
Multiply the numbers: 4⋅2⋅2=16=32+16​
32=9=9+16​
Add the numbers: 9+16=25=25​
Factor the number: 25=52=52​
Apply radical rule: 52​=5=5
u1,2​=2⋅2−3±5​
Separate the solutionsu1​=2⋅2−3+5​,u2​=2⋅2−3−5​
u=2⋅2−3+5​:21​
2⋅2−3+5​
Add/Subtract the numbers: −3+5=2=2⋅22​
Multiply the numbers: 2⋅2=4=42​
Cancel the common factor: 2=21​
u=2⋅2−3−5​:−2
2⋅2−3−5​
Subtract the numbers: −3−5=−8=2⋅2−8​
Multiply the numbers: 2⋅2=4=4−8​
Apply the fraction rule: b−a​=−ba​=−48​
Divide the numbers: 48​=2=−2
The solutions to the quadratic equation are:u=21​,u=−2
Substitute back u=cos(x)cos(x)=21​,cos(x)=−2
cos(x)=21​,cos(x)=−2
cos(x)=21​:x=3π​+2πn,x=35π​+2πn
cos(x)=21​
General solutions for cos(x)=21​
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
x=3π​+2πn,x=35π​+2πn
x=3π​+2πn,x=35π​+2πn
cos(x)=−2:No Solution
cos(x)=−2
−1≤cos(x)≤1NoSolution
Combine all the solutionsx=3π​+2πn,x=35π​+2πn
Combine all the solutionsx=32π​+2πn,x=34π​+2πn,x=3π​+2πn,x=35π​+2πn
Verify solutions by plugging them into the original equation
Check the solutions by plugging them into 3cot(x)=2sin(x)
Remove the ones that don't agree with the equation.
Check the solution 32π​+2πn:False
32π​+2πn
Plug in n=132π​+2π1
For 3cot(x)=2sin(x)plug inx=32π​+2π13cot(32π​+2π1)=2sin(32π​+2π1)
Refine−1.73205…=1.73205…
⇒False
Check the solution 34π​+2πn:False
34π​+2πn
Plug in n=134π​+2π1
For 3cot(x)=2sin(x)plug inx=34π​+2π13cot(34π​+2π1)=2sin(34π​+2π1)
Refine1.73205…=−1.73205…
⇒False
Check the solution 3π​+2πn:True
3π​+2πn
Plug in n=13π​+2π1
For 3cot(x)=2sin(x)plug inx=3π​+2π13cot(3π​+2π1)=2sin(3π​+2π1)
Refine1.73205…=1.73205…
⇒True
Check the solution 35π​+2πn:True
35π​+2πn
Plug in n=135π​+2π1
For 3cot(x)=2sin(x)plug inx=35π​+2π13cot(35π​+2π1)=2sin(35π​+2π1)
Refine−1.73205…=−1.73205…
⇒True
x=3π​+2πn,x=35π​+2πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

tan(a)= 7/12sin(5x)=cos(3x)sin^3(x)= 1/8solvefor y,sin(y^2)=xcos(7x)=-(sqrt(3))/2

Frequently Asked Questions (FAQ)

  • What is the general solution for 3cot(x)=2sin(x) ?

    The general solution for 3cot(x)=2sin(x) is x= pi/3+2pin,x=(5pi)/3+2pin
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024