Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

35+53sin(2T-31.9)=0

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

35+53sin(2T−31.9)=0

Solution

T=πn+231.9​−20.72132…​,T=πn+2π​+231.9​+20.72132…​
+1
Degrees
T=893.20335…∘+180∘n,T=1024.53201…∘+180∘n
Solution steps
35+53sin(2T−31.9)=0
Move 35to the right side
35+53sin(2T−31.9)=0
Subtract 35 from both sides35+53sin(2T−31.9)−35=0−35
Simplify53sin(2T−31.9)=−35
53sin(2T−31.9)=−35
Divide both sides by 53
53sin(2T−31.9)=−35
Divide both sides by 535353sin(2T−31.9)​=53−35​
Simplifysin(2T−31.9)=−5335​
sin(2T−31.9)=−5335​
Apply trig inverse properties
sin(2T−31.9)=−5335​
General solutions for sin(2T−31.9)=−5335​sin(x)=−a⇒x=arcsin(−a)+2πn,x=π+arcsin(a)+2πn2T−31.9=arcsin(−5335​)+2πn,2T−31.9=π+arcsin(5335​)+2πn
2T−31.9=arcsin(−5335​)+2πn,2T−31.9=π+arcsin(5335​)+2πn
Solve 2T−31.9=arcsin(−5335​)+2πn:T=πn+231.9​−2arcsin(5335​)​
2T−31.9=arcsin(−5335​)+2πn
Simplify arcsin(−5335​)+2πn:−arcsin(5335​)+2πn
arcsin(−5335​)+2πn
Use the following property: arcsin(−x)=−arcsin(x)arcsin(−5335​)=−arcsin(5335​)=−arcsin(5335​)+2πn
2T−31.9=−arcsin(5335​)+2πn
Move 31.9to the right side
2T−31.9=−arcsin(5335​)+2πn
Add 31.9 to both sides2T−31.9+31.9=−arcsin(5335​)+2πn+31.9
Simplify2T=−arcsin(5335​)+2πn+31.9
2T=−arcsin(5335​)+2πn+31.9
Divide both sides by 2
2T=−arcsin(5335​)+2πn+31.9
Divide both sides by 222T​=−2arcsin(5335​)​+22πn​+231.9​
Simplify
22T​=−2arcsin(5335​)​+22πn​+231.9​
Simplify 22T​:T
22T​
Divide the numbers: 22​=1=T
Simplify −2arcsin(5335​)​+22πn​+231.9​:πn+231.9​−2arcsin(5335​)​
−2arcsin(5335​)​+22πn​+231.9​
Group like terms=231.9​+22πn​−2arcsin(5335​)​
Divide the numbers: 22​=1=231.9​+πn−2arcsin(5335​)​
Group like terms=πn+231.9​−2arcsin(5335​)​
T=πn+231.9​−2arcsin(5335​)​
T=πn+231.9​−2arcsin(5335​)​
T=πn+231.9​−2arcsin(5335​)​
Solve 2T−31.9=π+arcsin(5335​)+2πn:T=πn+2π​+231.9​+2arcsin(5335​)​
2T−31.9=π+arcsin(5335​)+2πn
Move 31.9to the right side
2T−31.9=π+arcsin(5335​)+2πn
Add 31.9 to both sides2T−31.9+31.9=π+arcsin(5335​)+2πn+31.9
Simplify2T=π+arcsin(5335​)+2πn+31.9
2T=π+arcsin(5335​)+2πn+31.9
Divide both sides by 2
2T=π+arcsin(5335​)+2πn+31.9
Divide both sides by 222T​=2π​+2arcsin(5335​)​+22πn​+231.9​
Simplify
22T​=2π​+2arcsin(5335​)​+22πn​+231.9​
Simplify 22T​:T
22T​
Divide the numbers: 22​=1=T
Simplify 2π​+2arcsin(5335​)​+22πn​+231.9​:πn+2π​+231.9​+2arcsin(5335​)​
2π​+2arcsin(5335​)​+22πn​+231.9​
Group like terms=2π​+231.9​+22πn​+2arcsin(5335​)​
Divide the numbers: 22​=1=2π​+231.9​+πn+2arcsin(5335​)​
Group like terms=πn+2π​+231.9​+2arcsin(5335​)​
T=πn+2π​+231.9​+2arcsin(5335​)​
T=πn+2π​+231.9​+2arcsin(5335​)​
T=πn+2π​+231.9​+2arcsin(5335​)​
T=πn+231.9​−2arcsin(5335​)​,T=πn+2π​+231.9​+2arcsin(5335​)​
Show solutions in decimal formT=πn+231.9​−20.72132…​,T=πn+2π​+231.9​+20.72132…​

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

cos(2x)=-12sin(x)= 1/3 ,cos(x)sec(2x-10)=csc(32)4=cos(x)solvefor x,e^{4y}=cos(4x+y)
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024