Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

r^2=a^2(sin(x)+cos(x))

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

r2=a2(sin(x)+cos(x))

Solution

x=arcsin(2​a2r2​)+2πn−4π​,x=π+arcsin(−2​a2r2​)+2πn−4π​
Solution steps
r2=a2(sin(x)+cos(x))
Switch sidesa2(sin(x)+cos(x))=r2
Rewrite using trig identities
a2(sin(x)+cos(x))
sin(x)+cos(x)=2​sin(x+4π​)
sin(x)+cos(x)
Rewrite as=2​(2​1​sin(x)+2​1​cos(x))
Use the following trivial identity: cos(4π​)=2​1​Use the following trivial identity: sin(4π​)=2​1​=2​(cos(4π​)sin(x)+sin(4π​)cos(x))
Use the Angle Sum identity: sin(s+t)=sin(s)cos(t)+cos(s)sin(t)=2​sin(x+4π​)
=a22​sin(x+4π​)
a22​sin(x+4π​)=r2
Divide both sides by a22​;a=0
a22​sin(x+4π​)=r2
Divide both sides by a22​;a=0a22​a22​sin(x+4π​)​=a22​r2​;a=0
Simplify
a22​a22​sin(x+4π​)​=a22​r2​
Simplify a22​a22​sin(x+4π​)​:sin(x+4π​)
a22​a22​sin(x+4π​)​
Cancel the common factor: a2=2​2​sin(x+4π​)​
Cancel the common factor: 2​=sin(x+4π​)
Simplify a22​r2​:2a22​r2​
a22​r2​
Multiply by the conjugate 2​2​​=a22​2​r22​​
a22​2​=2a2
a22​2​
Apply radical rule: a​a​=a2​2​=2=2a2
=2a22​r2​
sin(x+4π​)=2a22​r2​;a=0
sin(x+4π​)=2a22​r2​;a=0
sin(x+4π​)=2a22​r2​;a=0
Apply trig inverse properties
sin(x+4π​)=2a22​r2​
General solutions for sin(x+4π​)=2a22​r2​sin(x)=a⇒x=arcsin(a)+2πn,x=π+arcsin(a)+2πnx+4π​=arcsin(2a22​r2​)+2πn,x+4π​=π+arcsin(−2a22​r2​)+2πn
x+4π​=arcsin(2a22​r2​)+2πn,x+4π​=π+arcsin(−2a22​r2​)+2πn
Solve x+4π​=arcsin(2a22​r2​)+2πn:x=arcsin(2​a2r2​)+2πn−4π​
x+4π​=arcsin(2a22​r2​)+2πn
Simplify arcsin(2a22​r2​)+2πn:arcsin(2​a2r2​)+2πn
arcsin(2a22​r2​)+2πn
2a22​r2​=2​a2r2​
2a22​r2​
Apply radical rule: 2​=221​=2a2221​r2​
Apply exponent rule: xbxa​=xb−a1​21221​​=21−21​1​=2−21​+1a2r2​
Subtract the numbers: 1−21​=21​=221​a2r2​
Apply radical rule: 221​=2​=2​a2r2​
=arcsin(2​a2r2​)+2πn
x+4π​=arcsin(2​a2r2​)+2πn
Move 4π​to the right side
x+4π​=arcsin(2​a2r2​)+2πn
Subtract 4π​ from both sidesx+4π​−4π​=arcsin(2​a2r2​)+2πn−4π​
Simplifyx=arcsin(2​a2r2​)+2πn−4π​
x=arcsin(2​a2r2​)+2πn−4π​
Solve x+4π​=π+arcsin(−2a22​r2​)+2πn:x=π+arcsin(−2​a2r2​)+2πn−4π​
x+4π​=π+arcsin(−2a22​r2​)+2πn
Simplify π+arcsin(−2a22​r2​)+2πn:π+arcsin(−2​a2r2​)+2πn
π+arcsin(−2a22​r2​)+2πn
2a22​r2​=2​a2r2​
2a22​r2​
Apply radical rule: 2​=221​=2a2221​r2​
Apply exponent rule: xbxa​=xb−a1​21221​​=21−21​1​=2−21​+1a2r2​
Subtract the numbers: 1−21​=21​=221​a2r2​
Apply radical rule: 221​=2​=2​a2r2​
=π+arcsin(−2​a2r2​)+2πn
x+4π​=π+arcsin(−2​a2r2​)+2πn
Move 4π​to the right side
x+4π​=π+arcsin(−2​a2r2​)+2πn
Subtract 4π​ from both sidesx+4π​−4π​=π+arcsin(−2​a2r2​)+2πn−4π​
Simplifyx=π+arcsin(−2​a2r2​)+2πn−4π​
x=π+arcsin(−2​a2r2​)+2πn−4π​
x=arcsin(2​a2r2​)+2πn−4π​,x=π+arcsin(−2​a2r2​)+2πn−4π​

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

cot(x)=3.2404cot(2θ)= 5/12sin((-pi)/6+3x)= 1/(sqrt(2))cos(2x)=0.2cos(2x)=0.6
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024