Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

sin^2(2x)+cos^2(3x)=1

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

sin2(2x)+cos2(3x)=1

Solution

x=54πn​,x=52π​+54πn​,x=5π​+54πn​,x=53π​+54πn​
+1
Degrees
x=0∘+144∘n,x=72∘+144∘n,x=36∘+144∘n,x=108∘+144∘n
Solution steps
sin2(2x)+cos2(3x)=1
Subtract 1 from both sidessin2(2x)+cos2(3x)−1=0
Rewrite using trig identities
−1+cos2(3x)+sin2(2x)
Use the Pythagorean identity: 1=cos2(x)+sin2(x)1−cos2(x)=sin2(x)=sin2(2x)−sin2(3x)
sin2(2x)−sin2(3x)=0
Factor sin2(2x)−sin2(3x):(sin(2x)+sin(3x))(sin(2x)−sin(3x))
sin2(2x)−sin2(3x)
Apply Difference of Two Squares Formula: x2−y2=(x+y)(x−y)sin2(2x)−sin2(3x)=(sin(2x)+sin(3x))(sin(2x)−sin(3x))=(sin(2x)+sin(3x))(sin(2x)−sin(3x))
(sin(2x)+sin(3x))(sin(2x)−sin(3x))=0
Solving each part separatelysin(2x)+sin(3x)=0orsin(2x)−sin(3x)=0
sin(2x)+sin(3x)=0:x=π+4πn,x=3π+4πn,x=54πn​,x=52π​+54πn​
sin(2x)+sin(3x)=0
Rewrite using trig identities
sin(2x)+sin(3x)
Use the Sum to Product identity: sin(s)+sin(t)=2sin(2s+t​)cos(2s−t​)=2sin(22x+3x​)cos(22x−3x​)
Simplify 2sin(22x+3x​)cos(22x−3x​):2cos(2x​)sin(25x​)
2sin(22x+3x​)cos(22x−3x​)
Add similar elements: 2x+3x=5x=2sin(25x​)cos(22x−3x​)
22x−3x​=−2x​
22x−3x​
Add similar elements: 2x−3x=−x=2−x​
Apply the fraction rule: b−a​=−ba​=−2x​
=2sin(25x​)cos(−2x​)
Use the negative angle identity: cos(−x)=cos(x)=2cos(2x​)sin(25x​)
=2cos(2x​)sin(25x​)
2cos(2x​)sin(25x​)=0
Solving each part separatelycos(2x​)=0orsin(25x​)=0
cos(2x​)=0:x=π+4πn,x=3π+4πn
cos(2x​)=0
General solutions for cos(2x​)=0
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
2x​=2π​+2πn,2x​=23π​+2πn
2x​=2π​+2πn,2x​=23π​+2πn
Solve 2x​=2π​+2πn:x=π+4πn
2x​=2π​+2πn
Multiply both sides by 2
2x​=2π​+2πn
Multiply both sides by 222x​=2⋅2π​+2⋅2πn
Simplify
22x​=2⋅2π​+2⋅2πn
Simplify 22x​:x
22x​
Divide the numbers: 22​=1=x
Simplify 2⋅2π​+2⋅2πn:π+4πn
2⋅2π​+2⋅2πn
2⋅2π​=π
2⋅2π​
Multiply fractions: a⋅cb​=ca⋅b​=2π2​
Cancel the common factor: 2=π
2⋅2πn=4πn
2⋅2πn
Multiply the numbers: 2⋅2=4=4πn
=π+4πn
x=π+4πn
x=π+4πn
x=π+4πn
Solve 2x​=23π​+2πn:x=3π+4πn
2x​=23π​+2πn
Multiply both sides by 2
2x​=23π​+2πn
Multiply both sides by 222x​=2⋅23π​+2⋅2πn
Simplify
22x​=2⋅23π​+2⋅2πn
Simplify 22x​:x
22x​
Divide the numbers: 22​=1=x
Simplify 2⋅23π​+2⋅2πn:3π+4πn
2⋅23π​+2⋅2πn
2⋅23π​=3π
2⋅23π​
Multiply fractions: a⋅cb​=ca⋅b​=23π2​
Cancel the common factor: 2=3π
2⋅2πn=4πn
2⋅2πn
Multiply the numbers: 2⋅2=4=4πn
=3π+4πn
x=3π+4πn
x=3π+4πn
x=3π+4πn
x=π+4πn,x=3π+4πn
sin(25x​)=0:x=54πn​,x=52π​+54πn​
sin(25x​)=0
General solutions for sin(25x​)=0
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
25x​=0+2πn,25x​=π+2πn
25x​=0+2πn,25x​=π+2πn
Solve 25x​=0+2πn:x=54πn​
25x​=0+2πn
0+2πn=2πn25x​=2πn
Multiply both sides by 2
25x​=2πn
Multiply both sides by 222⋅5x​=2⋅2πn
Simplify5x=4πn
5x=4πn
Divide both sides by 5
5x=4πn
Divide both sides by 555x​=54πn​
Simplifyx=54πn​
x=54πn​
Solve 25x​=π+2πn:x=52π​+54πn​
25x​=π+2πn
Multiply both sides by 2
25x​=π+2πn
Multiply both sides by 222⋅5x​=2π+2⋅2πn
Simplify5x=2π+4πn
5x=2π+4πn
Divide both sides by 5
5x=2π+4πn
Divide both sides by 555x​=52π​+54πn​
Simplifyx=52π​+54πn​
x=52π​+54πn​
x=54πn​,x=52π​+54πn​
Combine all the solutionsx=π+4πn,x=3π+4πn,x=54πn​,x=52π​+54πn​
sin(2x)−sin(3x)=0:x=5π​+54πn​,x=53π​+54πn​,x=4πn,x=2π+4πn
sin(2x)−sin(3x)=0
Rewrite using trig identities
sin(2x)−sin(3x)
Use the Sum to Product identity: sin(s)−sin(t)=2sin(2s−t​)cos(2s+t​)=2sin(22x−3x​)cos(22x+3x​)
Simplify 2sin(22x−3x​)cos(22x+3x​):−2cos(25x​)sin(2x​)
2sin(22x−3x​)cos(22x+3x​)
22x−3x​=−2x​
22x−3x​
Add similar elements: 2x−3x=−x=2−x​
Apply the fraction rule: b−a​=−ba​=−2x​
=2sin(−2x​)cos(22x+3x​)
Use the negative angle identity: sin(−x)=−sin(x)=2cos(22x+3x​)(−sin(2x​))
Remove parentheses: (−a)=−a=−2cos(22x+3x​)sin(2x​)
Add similar elements: 2x+3x=5x=−2cos(25x​)sin(2x​)
=−2cos(25x​)sin(2x​)
−2cos(25x​)sin(2x​)=0
Solving each part separatelycos(25x​)=0orsin(2x​)=0
cos(25x​)=0:x=5π​+54πn​,x=53π​+54πn​
cos(25x​)=0
General solutions for cos(25x​)=0
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
25x​=2π​+2πn,25x​=23π​+2πn
25x​=2π​+2πn,25x​=23π​+2πn
Solve 25x​=2π​+2πn:x=5π​+54πn​
25x​=2π​+2πn
Multiply both sides by 2
25x​=2π​+2πn
Multiply both sides by 222⋅5x​=2⋅2π​+2⋅2πn
Simplify
22⋅5x​=2⋅2π​+2⋅2πn
Simplify 22⋅5x​:5x
22⋅5x​
Multiply the numbers: 2⋅5=10=210x​
Divide the numbers: 210​=5=5x
Simplify 2⋅2π​+2⋅2πn:π+4πn
2⋅2π​+2⋅2πn
2⋅2π​=π
2⋅2π​
Multiply fractions: a⋅cb​=ca⋅b​=2π2​
Cancel the common factor: 2=π
2⋅2πn=4πn
2⋅2πn
Multiply the numbers: 2⋅2=4=4πn
=π+4πn
5x=π+4πn
5x=π+4πn
5x=π+4πn
Divide both sides by 5
5x=π+4πn
Divide both sides by 555x​=5π​+54πn​
Simplifyx=5π​+54πn​
x=5π​+54πn​
Solve 25x​=23π​+2πn:x=53π​+54πn​
25x​=23π​+2πn
Multiply both sides by 2
25x​=23π​+2πn
Multiply both sides by 222⋅5x​=2⋅23π​+2⋅2πn
Simplify
22⋅5x​=2⋅23π​+2⋅2πn
Simplify 22⋅5x​:5x
22⋅5x​
Multiply the numbers: 2⋅5=10=210x​
Divide the numbers: 210​=5=5x
Simplify 2⋅23π​+2⋅2πn:3π+4πn
2⋅23π​+2⋅2πn
2⋅23π​=3π
2⋅23π​
Multiply fractions: a⋅cb​=ca⋅b​=23π2​
Cancel the common factor: 2=3π
2⋅2πn=4πn
2⋅2πn
Multiply the numbers: 2⋅2=4=4πn
=3π+4πn
5x=3π+4πn
5x=3π+4πn
5x=3π+4πn
Divide both sides by 5
5x=3π+4πn
Divide both sides by 555x​=53π​+54πn​
Simplifyx=53π​+54πn​
x=53π​+54πn​
x=5π​+54πn​,x=53π​+54πn​
sin(2x​)=0:x=4πn,x=2π+4πn
sin(2x​)=0
General solutions for sin(2x​)=0
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
2x​=0+2πn,2x​=π+2πn
2x​=0+2πn,2x​=π+2πn
Solve 2x​=0+2πn:x=4πn
2x​=0+2πn
0+2πn=2πn2x​=2πn
Multiply both sides by 2
2x​=2πn
Multiply both sides by 222x​=2⋅2πn
Simplifyx=4πn
x=4πn
Solve 2x​=π+2πn:x=2π+4πn
2x​=π+2πn
Multiply both sides by 2
2x​=π+2πn
Multiply both sides by 222x​=2π+2⋅2πn
Simplifyx=2π+4πn
x=2π+4πn
x=4πn,x=2π+4πn
Combine all the solutionsx=5π​+54πn​,x=53π​+54πn​,x=4πn,x=2π+4πn
Combine all the solutionsx=π+4πn,x=3π+4πn,x=54πn​,x=52π​+54πn​,x=5π​+54πn​,x=53π​+54πn​,x=4πn,x=2π+4πn
Merge Overlapping Intervalsx=54πn​,x=52π​+54πn​,x=5π​+54πn​,x=53π​+54πn​

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

sin(θ)=0.9848cot^{(2)}(x)+2cot(x)+1=0cos(x)cos(x)=((1-sin^2(x)))/(sin(x))r^2=a^2(sin(x)+cos(x))cot(x)=3.2404
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024