Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

4cos^3(x)-3cos(x)=-0.7071

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

4cos3(x)−3cos(x)=−0.7071

Solution

x=1.30900…+2πn,x=2π−1.30900…+2πn,x=0.78539…+2πn,x=2π−0.78539…+2πn,x=2.87979…+2πn,x=−2.87979…+2πn
+1
Degrees
x=75.00018…∘+360∘n,x=284.99981…∘+360∘n,x=44.99981…∘+360∘n,x=315.00018…∘+360∘n,x=164.99981…∘+360∘n,x=−164.99981…∘+360∘n
Solution steps
4cos3(x)−3cos(x)=−0.7071
Solve by substitution
4cos3(x)−3cos(x)=−0.7071
Let: cos(x)=u4u3−3u=−0.7071
4u3−3u=−0.7071:u≈0.25881…,u≈0.70710…,u≈−0.96592…
4u3−3u=−0.7071
Move 0.7071to the left side
4u3−3u=−0.7071
Add 0.7071 to both sides4u3−3u+0.7071=−0.7071+0.7071
Simplify4u3−3u+0.7071=0
4u3−3u+0.7071=0
Find one solution for 4u3−3u+0.7071=0 using Newton-Raphson:u≈0.25881…
4u3−3u+0.7071=0
Newton-Raphson Approximation Definition
f(u)=4u3−3u+0.7071
Find f′(u):12u2−3
dud​(4u3−3u+0.7071)
Apply the Sum/Difference Rule: (f±g)′=f′±g′=dud​(4u3)−dud​(3u)+dud​(0.7071)
dud​(4u3)=12u2
dud​(4u3)
Take the constant out: (a⋅f)′=a⋅f′=4dud​(u3)
Apply the Power Rule: dxd​(xa)=a⋅xa−1=4⋅3u3−1
Simplify=12u2
dud​(3u)=3
dud​(3u)
Take the constant out: (a⋅f)′=a⋅f′=3dudu​
Apply the common derivative: dudu​=1=3⋅1
Simplify=3
dud​(0.7071)=0
dud​(0.7071)
Derivative of a constant: dxd​(a)=0=0
=12u2−3+0
Simplify=12u2−3
Let u0​=0Compute un+1​ until Δun+1​<0.000001
u1​=0.2357:Δu1​=0.2357
f(u0​)=4⋅03−3⋅0+0.7071=0.7071f′(u0​)=12⋅02−3=−3u1​=0.2357
Δu1​=∣0.2357−0∣=0.2357Δu1​=0.2357
u2​=0.25814…:Δu2​=0.02244…
f(u1​)=4⋅0.23573−3⋅0.2357+0.7071=0.05237…f′(u1​)=12⋅0.23572−3=−2.33334612u2​=0.25814…
Δu2​=∣0.25814…−0.2357∣=0.02244…Δu2​=0.02244…
u3​=0.25881…:Δu3​=0.00066…
f(u2​)=4⋅0.25814…3−3⋅0.25814…+0.7071=0.00147…f′(u2​)=12⋅0.25814…2−3=−2.20032…u3​=0.25881…
Δu3​=∣0.25881…−0.25814…∣=0.00066…Δu3​=0.00066…
u4​=0.25881…:Δu4​=6.30447E−7
f(u3​)=4⋅0.25881…3−3⋅0.25881…+0.7071=1.38457E−6f′(u3​)=12⋅0.25881…2−3=−2.19617…u4​=0.25881…
Δu4​=∣0.25881…−0.25881…∣=6.30447E−7Δu4​=6.30447E−7
u≈0.25881…
Apply long division:u−0.25881…4u3−3u+0.7071​=4u2+1.03526…u−2.73205…
4u2+1.03526…u−2.73205…≈0
Find one solution for 4u2+1.03526…u−2.73205…=0 using Newton-Raphson:u≈0.70710…
4u2+1.03526…u−2.73205…=0
Newton-Raphson Approximation Definition
f(u)=4u2+1.03526…u−2.73205…
Find f′(u):8u+1.03526…
dud​(4u2+1.03526…u−2.73205…)
Apply the Sum/Difference Rule: (f±g)′=f′±g′=dud​(4u2)+dud​(1.03526…u)−dud​(2.73205…)
dud​(4u2)=8u
dud​(4u2)
Take the constant out: (a⋅f)′=a⋅f′=4dud​(u2)
Apply the Power Rule: dxd​(xa)=a⋅xa−1=4⋅2u2−1
Simplify=8u
dud​(1.03526…u)=1.03526…
dud​(1.03526…u)
Take the constant out: (a⋅f)′=a⋅f′=1.03526…dudu​
Apply the common derivative: dudu​=1=1.03526…⋅1
Simplify=1.03526…
dud​(2.73205…)=0
dud​(2.73205…)
Derivative of a constant: dxd​(a)=0=0
=8u+1.03526…−0
Simplify=8u+1.03526…
Let u0​=3Compute un+1​ until Δun+1​<0.000001
u1​=1.54710…:Δu1​=1.45289…
f(u0​)=4⋅32+1.03526…⋅3−2.73205…=36.37373…f′(u0​)=8⋅3+1.03526…=25.03526…u1​=1.54710…
Δu1​=∣1.54710…−3∣=1.45289…Δu1​=1.45289…
u2​=0.91754…:Δu2​=0.62955…
f(u1​)=4⋅1.54710…2+1.03526…⋅1.54710…−2.73205…=8.44367…f′(u1​)=8⋅1.54710…+1.03526…=13.41206…u2​=0.91754…
Δu2​=∣0.91754…−1.54710…∣=0.62955…Δu2​=0.62955…
u3​=0.72825…:Δu3​=0.18928…
f(u2​)=4⋅0.91754…2+1.03526…⋅0.91754…−2.73205…=1.58537…f′(u2​)=8⋅0.91754…+1.03526…=8.37559…u3​=0.72825…
Δu3​=∣0.72825…−0.91754…∣=0.18928…Δu3​=0.18928…
u4​=0.70736…:Δu4​=0.02088…
f(u3​)=4⋅0.72825…2+1.03526…⋅0.72825…−2.73205…=0.14331…f′(u3​)=8⋅0.72825…+1.03526…=6.86132…u4​=0.70736…
Δu4​=∣0.70736…−0.72825…∣=0.02088…Δu4​=0.02088…
u5​=0.70710…:Δu5​=0.00026…
f(u4​)=4⋅0.70736…2+1.03526…⋅0.70736…−2.73205…=0.00174…f′(u4​)=8⋅0.70736…+1.03526…=6.69422…u5​=0.70710…
Δu5​=∣0.70710…−0.70736…∣=0.00026…Δu5​=0.00026…
u6​=0.70710…:Δu6​=4.06209E−8
f(u5​)=4⋅0.70710…2+1.03526…⋅0.70710…−2.73205…=2.71841E−7f′(u5​)=8⋅0.70710…+1.03526…=6.69213…u6​=0.70710…
Δu6​=∣0.70710…−0.70710…∣=4.06209E−8Δu6​=4.06209E−8
u≈0.70710…
Apply long division:u−0.70710…4u2+1.03526…u−2.73205…​=4u+3.86369…
4u+3.86369…≈0
u≈−0.96592…
The solutions areu≈0.25881…,u≈0.70710…,u≈−0.96592…
Substitute back u=cos(x)cos(x)≈0.25881…,cos(x)≈0.70710…,cos(x)≈−0.96592…
cos(x)≈0.25881…,cos(x)≈0.70710…,cos(x)≈−0.96592…
cos(x)=0.25881…:x=arccos(0.25881…)+2πn,x=2π−arccos(0.25881…)+2πn
cos(x)=0.25881…
Apply trig inverse properties
cos(x)=0.25881…
General solutions for cos(x)=0.25881…cos(x)=a⇒x=arccos(a)+2πn,x=2π−arccos(a)+2πnx=arccos(0.25881…)+2πn,x=2π−arccos(0.25881…)+2πn
x=arccos(0.25881…)+2πn,x=2π−arccos(0.25881…)+2πn
cos(x)=0.70710…:x=arccos(0.70710…)+2πn,x=2π−arccos(0.70710…)+2πn
cos(x)=0.70710…
Apply trig inverse properties
cos(x)=0.70710…
General solutions for cos(x)=0.70710…cos(x)=a⇒x=arccos(a)+2πn,x=2π−arccos(a)+2πnx=arccos(0.70710…)+2πn,x=2π−arccos(0.70710…)+2πn
x=arccos(0.70710…)+2πn,x=2π−arccos(0.70710…)+2πn
cos(x)=−0.96592…:x=arccos(−0.96592…)+2πn,x=−arccos(−0.96592…)+2πn
cos(x)=−0.96592…
Apply trig inverse properties
cos(x)=−0.96592…
General solutions for cos(x)=−0.96592…cos(x)=−a⇒x=arccos(−a)+2πn,x=−arccos(−a)+2πnx=arccos(−0.96592…)+2πn,x=−arccos(−0.96592…)+2πn
x=arccos(−0.96592…)+2πn,x=−arccos(−0.96592…)+2πn
Combine all the solutionsx=arccos(0.25881…)+2πn,x=2π−arccos(0.25881…)+2πn,x=arccos(0.70710…)+2πn,x=2π−arccos(0.70710…)+2πn,x=arccos(−0.96592…)+2πn,x=−arccos(−0.96592…)+2πn
Show solutions in decimal formx=1.30900…+2πn,x=2π−1.30900…+2πn,x=0.78539…+2πn,x=2π−0.78539…+2πn,x=2.87979…+2πn,x=−2.87979…+2πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

2tan(x)=tan(2x)arctan(x*10000pi)=126sin^2(x)*cos^2(x)=15.8=11.8sin(3.78*t)-1+sin(x)+2sin^2(x)=0
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024