Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

sinh(x40)= 30/40

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

sinh(x40)=4030​

Solution

x=401​ln(2)
+1
Degrees
x=0.99286…∘
Solution steps
sinh(x⋅40)=4030​
Rewrite using trig identities
sinh(x⋅40)=4030​
Use the Hyperbolic identity: sinh(x)=2ex−e−x​2ex⋅40−e−x⋅40​=4030​
2ex⋅40−e−x⋅40​=4030​
2ex⋅40−e−x⋅40​=4030​:x=401​ln(2)
2ex⋅40−e−x⋅40​=4030​
Apply fraction cross multiply: if ba​=dc​ then a⋅d=b⋅c(ex⋅40−e−x⋅40)⋅40=2⋅30
Simplify(ex⋅40−e−x⋅40)⋅40=60
Apply exponent rules
(ex⋅40−e−x⋅40)⋅40=60
Apply exponent rule: abc=(ab)cex40=(ex)40,e−x40=(ex)−40((ex)40−(ex)−40)⋅40=60
((ex)40−(ex)−40)⋅40=60
Rewrite the equation with ex=u((u)40−(u)−40)⋅40=60
Solve
(u40−u−40)⋅40=60
Refine(u40−u401​)⋅40=60
Simplify (u40−u401​)⋅40:40(u40−u401​)
(u40−u401​)⋅40
Apply the commutative law: (u40−u401​)⋅40=40(u40−u401​)40(u40−u401​)
40(u40−u401​)=60
Expand 40(u40−u401​):40u40−u4040​
40(u40−u401​)
Apply the distributive law: a(b−c)=ab−aca=40,b=u40,c=u401​=40u40−40⋅u401​
40⋅u401​=u4040​
40⋅u401​
Multiply fractions: a⋅cb​=ca⋅b​=u401⋅40​
Multiply the numbers: 1⋅40=40=u4040​
=40u40−u4040​
40u40−u4040​=60
Multiply both sides by u40
40u40−u4040​=60
Multiply both sides by u4040u40u40−u4040​u40=60u40
Simplify
40u40u40−u4040​u40=60u40
Simplify 40u40u40:40u80
40u40u40
Apply exponent rule: ab⋅ac=ab+cu40u40=u40+40=40u40+40
Add the numbers: 40+40=80=40u80
Simplify −u4040​u40:−40
−u4040​u40
Multiply fractions: a⋅cb​=ca⋅b​=−u4040u40​
Cancel the common factor: u40=−40
40u80−40=60u40
40u80−40=60u40
40u80−40=60u40
Solve
40u80−40=60u40
Move 60u40to the left side
40u80−40=60u40
Subtract 60u40 from both sides40u80−40−60u40=60u40−60u40
Simplify40u80−40−60u40=0
40u80−40−60u40=0
Write in the standard form an​xn+…+a1​x+a0​=040u80−60u40−40=0
Rewrite the equation with v=u2,v20=u40 and v40=u8040v40−60v20−40=0
Solve
40v40−60v20−40=0
Rewrite the equation with u=v2,u10=v20 and u20=v4040u20−60u10−40=0
Solve
40u20−60u10−40=0
Rewrite the equation with v=u2,v5=u10 and v10=u2040v10−60v5−40=0
Solve
40v10−60v5−40=0
Rewrite the equation with u=v5 and u2=v1040u2−60u−40=0
Solve 40u2−60u−40=0:u=2,u=−21​
40u2−60u−40=0
Solve with the quadratic formula
40u2−60u−40=0
Quadratic Equation Formula:
For a=40,b=−60,c=−40u1,2​=2⋅40−(−60)±(−60)2−4⋅40(−40)​​
u1,2​=2⋅40−(−60)±(−60)2−4⋅40(−40)​​
(−60)2−4⋅40(−40)​=100
(−60)2−4⋅40(−40)​
Apply rule −(−a)=a=(−60)2+4⋅40⋅40​
Apply exponent rule: (−a)n=an,if n is even(−60)2=602=602+4⋅40⋅40​
Multiply the numbers: 4⋅40⋅40=6400=602+6400​
602=3600=3600+6400​
Add the numbers: 3600+6400=10000=10000​
Factor the number: 10000=1002=1002​
Apply radical rule: 1002​=100=100
u1,2​=2⋅40−(−60)±100​
Separate the solutionsu1​=2⋅40−(−60)+100​,u2​=2⋅40−(−60)−100​
u=2⋅40−(−60)+100​:2
2⋅40−(−60)+100​
Apply rule −(−a)=a=2⋅4060+100​
Add the numbers: 60+100=160=2⋅40160​
Multiply the numbers: 2⋅40=80=80160​
Divide the numbers: 80160​=2=2
u=2⋅40−(−60)−100​:−21​
2⋅40−(−60)−100​
Apply rule −(−a)=a=2⋅4060−100​
Subtract the numbers: 60−100=−40=2⋅40−40​
Multiply the numbers: 2⋅40=80=80−40​
Apply the fraction rule: b−a​=−ba​=−8040​
Cancel the common factor: 40=−21​
The solutions to the quadratic equation are:u=2,u=−21​
u=2,u=−21​
Substitute back u=v5,solve for v
Solve
v5=2
For xn=f(a), n is odd, the solution is
Solve
v5=−21​
For xn=f(a), n is odd, the solution is
Apply radical rule: if n is odd
Apply radical rule:
Apply radical rule:
The solutions are
Substitute back v=u2,solve for u
Solve
For x2=f(a) the solutions are x=f(a)​,−f(a)​
Solve No Solution for u∈R
x2 cannot be negative for x∈RNoSolutionforu∈R
The solutions are
Substitute back u=v2,solve for v
Solve
Simplify
Apply radical rule: =(251​)21​
Apply exponent rule: (ab)c=abc=251​⋅21​
51​⋅21​=101​
51​⋅21​
Multiply fractions: ba​⋅dc​=b⋅da⋅c​=5⋅21⋅1​
Multiply the numbers: 1⋅1=1=5⋅21​
Multiply the numbers: 5⋅2=10=101​
=2101​
For x2=f(a) the solutions are x=f(a)​,−f(a)​
Solve No Solution for v∈R
Simplify
Apply radical rule: =(251​)21​
Apply exponent rule: (ab)c=abc=251​⋅21​
51​⋅21​=101​
51​⋅21​
Multiply fractions: ba​⋅dc​=b⋅da⋅c​=5⋅21⋅1​
Multiply the numbers: 1⋅1=1=5⋅21​
Multiply the numbers: 5⋅2=10=101​
=2101​
x2 cannot be negative for x∈RNoSolutionforv∈R
The solutions are
Substitute back v=u2,solve for u
Solve
Simplify
Apply radical rule: =(2101​)21​
Apply exponent rule: (ab)c=abc=2101​⋅21​
101​⋅21​=201​
101​⋅21​
Multiply fractions: ba​⋅dc​=b⋅da⋅c​=10⋅21⋅1​
Multiply the numbers: 1⋅1=1=10⋅21​
Multiply the numbers: 10⋅2=20=201​
=2201​
For x2=f(a) the solutions are x=f(a)​,−f(a)​
Solve No Solution for u∈R
Simplify
Apply radical rule: =(2101​)21​
Apply exponent rule: (ab)c=abc=2101​⋅21​
101​⋅21​=201​
101​⋅21​
Multiply fractions: ba​⋅dc​=b⋅da⋅c​=10⋅21⋅1​
Multiply the numbers: 1⋅1=1=10⋅21​
Multiply the numbers: 10⋅2=20=201​
=2201​
x2 cannot be negative for x∈RNoSolutionforu∈R
The solutions are
Verify Solutions
Find undefined (singularity) points:u=0
Take the denominator(s) of (u40−u−40)40 and compare to zero
Solve u40=0:u=0
u40=0
Apply rule xn=0⇒x=0
u=0
The following points are undefinedu=0
Combine undefined points with solutions:
Substitute back u=ex,solve for x
Solve
Apply exponent rules
Apply exponent rule: a​=a21​
Apply exponent rule: (ab)c=abcex=2201​⋅21​
If f(x)=g(x), then ln(f(x))=ln(g(x))ln(ex)=ln(2201​⋅21​)
Apply log rule: ln(ea)=aln(ex)=xx=ln(2201​⋅21​)
Apply log rule: ln(xa)=a⋅ln(x)ln(2201​⋅21​)=201​⋅21​ln(2)x=201​⋅21​ln(2)
Simplifyx=401​ln(2)
x=401​ln(2)
Solve No Solution for x∈R
Apply exponent rules
Apply exponent rule: (ab)c=abcex=−2201​⋅21​
ex=−2201​⋅21​
af(x) cannot be zero or negative for x∈RNoSolutionforx∈R
x=401​ln(2)
x=401​ln(2)

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

tan(θ)=0.364cosh(x)+3sinh(x)=5tan(θ)=0.04csc(θ)= 9/115-7sin(x)=2cos^2(x)

Frequently Asked Questions (FAQ)

  • What is the general solution for sinh(x40)= 30/40 ?

    The general solution for sinh(x40)= 30/40 is x= 1/40 ln(2)
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024