Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

4cosh(x)+3sinh(x)=5

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

4cosh(x)+3sinh(x)=5

Solution

x=ln(75+32​​),x=ln(75−32​​)
+1
Degrees
x=15.92349…∘,x=−127.41593…∘
Solution steps
4cosh(x)+3sinh(x)=5
Rewrite using trig identities
4cosh(x)+3sinh(x)=5
Use the Hyperbolic identity: sinh(x)=2ex−e−x​4cosh(x)+3⋅2ex−e−x​=5
Use the Hyperbolic identity: cosh(x)=2ex+e−x​4⋅2ex+e−x​+3⋅2ex−e−x​=5
4⋅2ex+e−x​+3⋅2ex−e−x​=5
4⋅2ex+e−x​+3⋅2ex−e−x​=5:x=ln(75+32​​),x=ln(75−32​​)
4⋅2ex+e−x​+3⋅2ex−e−x​=5
Apply exponent rules
4⋅2ex+e−x​+3⋅2ex−e−x​=5
Apply exponent rule: abc=(ab)ce−x=(ex)−14⋅2ex+(ex)−1​+3⋅2ex−(ex)−1​=5
4⋅2ex+(ex)−1​+3⋅2ex−(ex)−1​=5
Rewrite the equation with ex=u4⋅2u+(u)−1​+3⋅2u−(u)−1​=5
Solve 4⋅2u+u−1​+3⋅2u−u−1​=5:u=75+32​​,u=75−32​​
4⋅2u+u−1​+3⋅2u−u−1​=5
Refineu2(u2+1)​+2u3(u2−1)​=5
Multiply by LCM
u2(u2+1)​+2u3(u2−1)​=5
Find Least Common Multiplier of u,2u:2u
u,2u
Lowest Common Multiplier (LCM)
Compute an expression comprised of factors that appear either in u or 2u=2u
Multiply by LCM=2uu2(u2+1)​⋅2u+2u3(u2−1)​⋅2u=5⋅2u
Simplify
u2(u2+1)​⋅2u+2u3(u2−1)​⋅2u=5⋅2u
Simplify u2(u2+1)​⋅2u:4(u2+1)
u2(u2+1)​⋅2u
Multiply fractions: a⋅cb​=ca⋅b​=u2(u2+1)⋅2u​
Cancel the common factor: u=2(u2+1)⋅2
Multiply the numbers: 2⋅2=4=4(u2+1)
Simplify 2u3(u2−1)​⋅2u:3(u2−1)
2u3(u2−1)​⋅2u
Multiply fractions: a⋅cb​=ca⋅b​=2u3(u2−1)⋅2u​
Cancel the common factor: 2=u3(u2−1)u​
Cancel the common factor: u=3(u2−1)
Simplify 5⋅2u:10u
5⋅2u
Multiply the numbers: 5⋅2=10=10u
4(u2+1)+3(u2−1)=10u
4(u2+1)+3(u2−1)=10u
4(u2+1)+3(u2−1)=10u
Solve 4(u2+1)+3(u2−1)=10u:u=75+32​​,u=75−32​​
4(u2+1)+3(u2−1)=10u
Expand 4(u2+1)+3(u2−1):7u2+1
4(u2+1)+3(u2−1)
Expand 4(u2+1):4u2+4
4(u2+1)
Apply the distributive law: a(b+c)=ab+aca=4,b=u2,c=1=4u2+4⋅1
Multiply the numbers: 4⋅1=4=4u2+4
=4u2+4+3(u2−1)
Expand 3(u2−1):3u2−3
3(u2−1)
Apply the distributive law: a(b−c)=ab−aca=3,b=u2,c=1=3u2−3⋅1
Multiply the numbers: 3⋅1=3=3u2−3
=4u2+4+3u2−3
Simplify 4u2+4+3u2−3:7u2+1
4u2+4+3u2−3
Group like terms=4u2+3u2+4−3
Add similar elements: 4u2+3u2=7u2=7u2+4−3
Add/Subtract the numbers: 4−3=1=7u2+1
=7u2+1
7u2+1=10u
Move 10uto the left side
7u2+1=10u
Subtract 10u from both sides7u2+1−10u=10u−10u
Simplify7u2+1−10u=0
7u2+1−10u=0
Write in the standard form ax2+bx+c=07u2−10u+1=0
Solve with the quadratic formula
7u2−10u+1=0
Quadratic Equation Formula:
For a=7,b=−10,c=1u1,2​=2⋅7−(−10)±(−10)2−4⋅7⋅1​​
u1,2​=2⋅7−(−10)±(−10)2−4⋅7⋅1​​
(−10)2−4⋅7⋅1​=62​
(−10)2−4⋅7⋅1​
Apply exponent rule: (−a)n=an,if n is even(−10)2=102=102−4⋅7⋅1​
Multiply the numbers: 4⋅7⋅1=28=102−28​
102=100=100−28​
Subtract the numbers: 100−28=72=72​
Prime factorization of 72:23⋅32
72
72divides by 272=36⋅2=2⋅36
36divides by 236=18⋅2=2⋅2⋅18
18divides by 218=9⋅2=2⋅2⋅2⋅9
9divides by 39=3⋅3=2⋅2⋅2⋅3⋅3
2,3 are all prime numbers, therefore no further factorization is possible=2⋅2⋅2⋅3⋅3
=23⋅32
=23⋅32​
Apply exponent rule: ab+c=ab⋅ac=22⋅32⋅2​
Apply radical rule: =2​22​32​
Apply radical rule: 22​=2=22​32​
Apply radical rule: 32​=3=2⋅32​
Refine=62​
u1,2​=2⋅7−(−10)±62​​
Separate the solutionsu1​=2⋅7−(−10)+62​​,u2​=2⋅7−(−10)−62​​
u=2⋅7−(−10)+62​​:75+32​​
2⋅7−(−10)+62​​
Apply rule −(−a)=a=2⋅710+62​​
Multiply the numbers: 2⋅7=14=1410+62​​
Factor 10+62​:2(5+32​)
10+62​
Rewrite as=2⋅5+2⋅32​
Factor out common term 2=2(5+32​)
=142(5+32​)​
Cancel the common factor: 2=75+32​​
u=2⋅7−(−10)−62​​:75−32​​
2⋅7−(−10)−62​​
Apply rule −(−a)=a=2⋅710−62​​
Multiply the numbers: 2⋅7=14=1410−62​​
Factor 10−62​:2(5−32​)
10−62​
Rewrite as=2⋅5−2⋅32​
Factor out common term 2=2(5−32​)
=142(5−32​)​
Cancel the common factor: 2=75−32​​
The solutions to the quadratic equation are:u=75+32​​,u=75−32​​
u=75+32​​,u=75−32​​
Verify Solutions
Find undefined (singularity) points:u=0
Take the denominator(s) of 42u+u−1​+32u−u−1​ and compare to zero
u=0
The following points are undefinedu=0
Combine undefined points with solutions:
u=75+32​​,u=75−32​​
u=75+32​​,u=75−32​​
Substitute back u=ex,solve for x
Solve ex=75+32​​:x=ln(75+32​​)
ex=75+32​​
Apply exponent rules
ex=75+32​​
If f(x)=g(x), then ln(f(x))=ln(g(x))ln(ex)=ln(75+32​​)
Apply log rule: ln(ea)=aln(ex)=xx=ln(75+32​​)
x=ln(75+32​​)
Solve ex=75−32​​:x=ln(75−32​​)
ex=75−32​​
Apply exponent rules
ex=75−32​​
If f(x)=g(x), then ln(f(x))=ln(g(x))ln(ex)=ln(75−32​​)
Apply log rule: ln(ea)=aln(ex)=xx=ln(75−32​​)
x=ln(75−32​​)
x=ln(75+32​​),x=ln(75−32​​)
x=ln(75+32​​),x=ln(75−32​​)

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

tan(θ)=0.04csc(θ)= 9/115-7sin(x)=2cos^2(x)cos(x)=0.117tan(a)=0.5

Frequently Asked Questions (FAQ)

  • What is the general solution for 4cosh(x)+3sinh(x)=5 ?

    The general solution for 4cosh(x)+3sinh(x)=5 is x=ln((5+3sqrt(2))/7),x=ln((5-3sqrt(2))/7)
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024