Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

(sec(x)+csc(x))/(1+tan(x))=sin(x)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

1+tan(x)sec(x)+csc(x)​=sin(x)

Solution

NoSolutionforx∈R
Solution steps
1+tan(x)sec(x)+csc(x)​=sin(x)
Subtract sin(x) from both sides1+tan(x)sec(x)+csc(x)​−sin(x)=0
Simplify 1+tan(x)sec(x)+csc(x)​−sin(x):1+tan(x)sec(x)+csc(x)−sin(x)(1+tan(x))​
1+tan(x)sec(x)+csc(x)​−sin(x)
Convert element to fraction: sin(x)=1+tan(x)sin(x)(1+tan(x))​=1+tan(x)sec(x)+csc(x)​−1+tan(x)sin(x)(1+tan(x))​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=1+tan(x)sec(x)+csc(x)−sin(x)(1+tan(x))​
1+tan(x)sec(x)+csc(x)−sin(x)(1+tan(x))​=0
g(x)f(x)​=0⇒f(x)=0sec(x)+csc(x)−sin(x)(1+tan(x))=0
Express with sin, cos
csc(x)+sec(x)−(1+tan(x))sin(x)
Use the basic trigonometric identity: csc(x)=sin(x)1​=sin(x)1​+sec(x)−(1+tan(x))sin(x)
Use the basic trigonometric identity: sec(x)=cos(x)1​=sin(x)1​+cos(x)1​−(1+tan(x))sin(x)
Use the basic trigonometric identity: tan(x)=cos(x)sin(x)​=sin(x)1​+cos(x)1​−(1+cos(x)sin(x)​)sin(x)
Simplify sin(x)1​+cos(x)1​−(1+cos(x)sin(x)​)sin(x):sin(x)cos(x)cos(x)+sin(x)−sin2(x)(cos(x)+sin(x))​
sin(x)1​+cos(x)1​−(1+cos(x)sin(x)​)sin(x)
Join 1+cos(x)sin(x)​:cos(x)cos(x)+sin(x)​
1+cos(x)sin(x)​
Convert element to fraction: 1=cos(x)1cos(x)​=cos(x)1⋅cos(x)​+cos(x)sin(x)​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=cos(x)1⋅cos(x)+sin(x)​
Multiply: 1⋅cos(x)=cos(x)=cos(x)cos(x)+sin(x)​
=sin(x)1​+cos(x)1​−cos(x)cos(x)+sin(x)​sin(x)
Multiply cos(x)cos(x)+sin(x)​sin(x):cos(x)sin(x)(cos(x)+sin(x))​
cos(x)cos(x)+sin(x)​sin(x)
Multiply fractions: a⋅cb​=ca⋅b​=cos(x)(cos(x)+sin(x))sin(x)​
=sin(x)1​+cos(x)1​−cos(x)(cos(x)+sin(x))sin(x)​
Least Common Multiplier of sin(x),cos(x),cos(x):sin(x)cos(x)
sin(x),cos(x),cos(x)
Lowest Common Multiplier (LCM)
Compute an expression comprised of factors that appear in at least one of the factored expressions=sin(x)cos(x)
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM sin(x)cos(x)
For sin(x)1​:multiply the denominator and numerator by cos(x)sin(x)1​=sin(x)cos(x)1⋅cos(x)​=sin(x)cos(x)cos(x)​
For cos(x)1​:multiply the denominator and numerator by sin(x)cos(x)1​=cos(x)sin(x)1⋅sin(x)​=sin(x)cos(x)sin(x)​
For cos(x)(cos(x)+sin(x))sin(x)​:multiply the denominator and numerator by sin(x)cos(x)(cos(x)+sin(x))sin(x)​=cos(x)sin(x)(cos(x)+sin(x))sin(x)sin(x)​=sin(x)cos(x)sin2(x)(cos(x)+sin(x))​
=sin(x)cos(x)cos(x)​+sin(x)cos(x)sin(x)​−sin(x)cos(x)sin2(x)(cos(x)+sin(x))​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=sin(x)cos(x)cos(x)+sin(x)−sin2(x)(cos(x)+sin(x))​
=sin(x)cos(x)cos(x)+sin(x)−sin2(x)(cos(x)+sin(x))​
cos(x)sin(x)cos(x)+sin(x)−(cos(x)+sin(x))sin2(x)​=0
g(x)f(x)​=0⇒f(x)=0cos(x)+sin(x)−(cos(x)+sin(x))sin2(x)=0
Factor cos(x)+sin(x)−(cos(x)+sin(x))sin2(x):−(cos(x)+sin(x))(sin(x)+1)(sin(x)−1)
cos(x)+sin(x)−(cos(x)+sin(x))sin2(x)
Rewrite as=−(cos(x)+sin(x))sin2(x)+1⋅(cos(x)+sin(x))
Factor out common term (cos(x)+sin(x))=(cos(x)+sin(x))(−sin2(x)+1)
Factor −sin2(x)+1:−(sin(x)+1)(sin(x)−1)
−sin2(x)+1
Factor out common term −1=−(sin2(x)−1)
Factor sin2(x)−1:(sin(x)+1)(sin(x)−1)
sin2(x)−1
Rewrite 1 as 12=sin2(x)−12
Apply Difference of Two Squares Formula: x2−y2=(x+y)(x−y)sin2(x)−12=(sin(x)+1)(sin(x)−1)=(sin(x)+1)(sin(x)−1)
=−(sin(x)+1)(sin(x)−1)
=(cos(x)+sin(x))(−(sin(x)+1)(sin(x)−1))
Refine=−(sin(x)+1)(sin(x)−1)(cos(x)+sin(x))
−(cos(x)+sin(x))(sin(x)+1)(sin(x)−1)=0
Solving each part separatelycos(x)+sin(x)=0orsin(x)+1=0orsin(x)−1=0
cos(x)+sin(x)=0:x=43π​+πn
cos(x)+sin(x)=0
Rewrite using trig identities
cos(x)+sin(x)=0
Divide both sides by cos(x),cos(x)=0cos(x)cos(x)+sin(x)​=cos(x)0​
Simplify1+cos(x)sin(x)​=0
Use the basic trigonometric identity: cos(x)sin(x)​=tan(x)1+tan(x)=0
1+tan(x)=0
Move 1to the right side
1+tan(x)=0
Subtract 1 from both sides1+tan(x)−1=0−1
Simplifytan(x)=−1
tan(x)=−1
General solutions for tan(x)=−1
tan(x) periodicity table with πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​tan(x)033​​13​±∞−3​−1−33​​​​
x=43π​+πn
x=43π​+πn
sin(x)+1=0:x=23π​+2πn
sin(x)+1=0
Move 1to the right side
sin(x)+1=0
Subtract 1 from both sidessin(x)+1−1=0−1
Simplifysin(x)=−1
sin(x)=−1
General solutions for sin(x)=−1
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
x=23π​+2πn
x=23π​+2πn
sin(x)−1=0:x=2π​+2πn
sin(x)−1=0
Move 1to the right side
sin(x)−1=0
Add 1 to both sidessin(x)−1+1=0+1
Simplifysin(x)=1
sin(x)=1
General solutions for sin(x)=1
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
x=2π​+2πn
x=2π​+2πn
Combine all the solutionsx=43π​+πn,x=23π​+2πn,x=2π​+2πn
Since the equation is undefined for:43π​+πn,23π​+2πn,2π​+2πnNoSolutionforx∈R

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

sec(x)-(sin(x))/(cos(x))=cos(x)cos(θ)=0.4,sec(θ)cot(θ)=(1+cos^2(θ))/(2sin(θ)cos(θ))sec(3x)-csc(30)=0,(x+35)/54cos(2θ)-10cos(θ)+14=7,0<= θ<360

Frequently Asked Questions (FAQ)

  • What is the general solution for (sec(x)+csc(x))/(1+tan(x))=sin(x) ?

    The general solution for (sec(x)+csc(x))/(1+tan(x))=sin(x) is No Solution for x\in\mathbb{R}
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024